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Abstract

What determines the distribution of establishments in terms of size and life-cycle
growth? How are those determinants related to aggregate productivity? We provide
novel answers by developing a framework that uses price and quantity information
on establishments’ outputs and inputs to jointly estimate the demand and production
parameters, and subsequently, establishments’ quality-adjusted productivity, deriving
both micro-level and aggregate implications. We find that the dominant source of
variation in establishment size is variation in quality/product appeal but that variation
in technical efficiency plays an important supporting role. Multiple factors dampen
dispersion in establishment size including dispersion in input (quality-adjusted) prices,
markups, and residual wedges. Relatively moderate dampening factors induce large
aggregate allocative efficiency losses relative to their absence. We show that joint
estimation of the parameters of the demand and production function crucially affects
inferences on the determinants of the size distribution of firms and their implications
for aggregate productivity.
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1 Introduction

A prevalent feature of market economies is heterogeneity of firm and establishment size,
growth, and a host of establishment attributes correlated with size (e.g., productivity, ex-
ports, survival). What are the sources of such heterogeneity, how does the answer matter
for aggregate productivity and welfare? A crucial insight from the macro misallocation lit-
erature is that there are wedges (often referred to as distortions) impacting establishment
size relative to what would be implied by establishment true productivity, and that this
leads to aggregate productivity losses, especially in developing economies. Contributions in
trade and IO have focused on how firm/establishment size is impacted by attributes such as
demand (quality/appeal), markups, or costs, finding that idiosyncratic demand-side factors
dominate.1

How do these findings relate to each other? Do wedges lie mainly on the cost or demand
sides? What sources of heterogeneity across productive units are most harmful for aggregate
activity and which are most enhancing, and how is that harm reflected in the size distribution
of firms? We examine these questions by developing a unified conceptual, measurement, and
estimation structure that accounts for a uniquely rich set of establishment (plant) attributes,
and taking it to detailed data on manufacturing establishments. Our framework takes ad-
vantage of data on output and input prices and quantities to measure and estimate the role
of these detailed establishment attributes. We consider establishment-level quality shifters,
markups, and two distinct dimensions of idiosyncratic marginal costs: technical efficiency
and quality-adjusted input prices, including wages, material prices, and, in an extension,
idiosyncratic user cost of capital inclusive of factor-biased distortions. Residual wedges help
account for the differences between the size distribution implied by theory and the data even
after incorporating all of the components separately measured in our analysis.2

In the face of data constraints, assessing the roles of each of these different margins
simultaneously has not been possible. True productivity (best interpreted as a composite of
technical efficiency and quality/appeal) and wedges are typically identified from structures
that exploit micro data on revenue and input expenditures, while structures that use product-
level data on output prices and quantities have been used to separately identify quality, costs,
and markups. We use detailed product-level data on quantities and prices for outputs and
inputs from the Colombian Annual Manufacturing Survey. This is a uniquely rich census of
non-micro manufacturing establishments with data on quantities and prices, at the detailed

1The misallocation literature is extensive. Prominent examples are Restuccia and Rogerson (2008, 2017);
Hsieh and Klenow (2009, 2014); Guner, Ventura and Xu (2008); Midrigan and Xu (2014); Bartelsman,
Haltiwanger and Scarpetta (2013); Bento and Restuccia (2017); Adamopoulos and Restuccia (2014). Quality
is the focus in Brooks (2006); Fieler, Eslava and Xu (2018); Hallak and Schott (2011); Khandelwal (2010);
Kugler and Verhoogen (2011); Manova and Zhang (2012). Hottman, Redding and Weinstein (2016) recently
integrated demand, markups, and residual costs into an estimation framework, but not wedges (i.e. departures
from the model) Technical efficiency vs. demand is emphasized in Foster, Haltiwanger and Syverson (2008,
2016); Jaumandreu and Mairesse (2010). De Loecker and Warzynski (2012); De Loecker, Eeckhout and Unger
(2020) have focused on markups using an indirect approach with only revenue and expenditure data.

2Our approach whittles down the contribution of unexplained residual wedges considerably relative to the
literature. As has been emphasized in the literature, such residual wedges might reflect a host of factors
including policy and institutional distortions, adjustment costs, information frictions, financial frictions, and
labor market frictions (see, e.g. Asker, Collard-Wexler and De Loecker, 2014; David and Venkateswaran,
2019; Midrigan and Xu, 2014; Guner, Ventura and Xu, 2008)
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product class, for outputs and inputs. It follows individual plants for up to thirty years,
allowing us to investigate the role of different attributes over medium- and long-term life
cycle growth.

In the model, which nests the Hsieh and Klenow (2009) model on the production side and
that proposed by Hottman, Redding and Weinstein (2016) on the demand side, consumers
value both the quantities and qualities consumed of goods produced by (multi-product) es-
tablishments. The scale of an establishment is its choice, as a function of a set of attributes:
quality/appeal to consumers of its bundle of products, efficiency of its production process,
the input prices it faces, its markup, and other characteristics known to the establishment
but unmeasured by the econometrician. The model delivers an expression that allows de-
composing variation in establishment size in the cross section and over the life cycle into
the contribution of each of these attributes, and another that relates aggregate allocative
efficiency to each of these sources of establishment heterogeneity.

As in Hsieh and Klenow (2009) (HK henceforth), establishment size in an efficient world
with quality differentiation would be determined solely by a composite of technology and
quality (the attributes valued by consumers). We denominate that composite as quality-
adjusted productivity. There are wedges between efficient and actual size. Relative to their
seminal work, we unpack efficient size into its quality vs. efficiency components, and wedges
into those linked to idiosyncratic markups, dispersion in input prices, and other factors cap-
tured in residual wedges. We quantify the role of each in the distribution of establishment
size and in aggregate efficiency. As in Hottman, Redding and Weinstein (2016) (henceforth
HRW ), in turn, we determine how plant size is impacted by quality/appeal and the markup,
while also disentangling the residual “marginal cost” (as labeled in HRW ) into the contri-
butions of technical efficiency in production, input price dispersion and residual wedges that
the econometrician cannot appropriately attribute to cost or demand factors.

The measurement of these attributes of establishments requires, and the richness of the
data permits, estimating the parameters of the production and demand functions. We in-
troduce an estimation technique that jointly estimates the two functions for each sector,
bringing together insights from recent literature on estimating production functions based on
output and input use data and proxy methods, and literature on estimating demand func-
tions using P and Q data for outputs.3 We do not impose constant returns to scale. In
contrast to much of the literature estimating demand functions, we allow technical efficiency
and quality/appeal to be correlated, even within establishments over time.

Quality-adjusted productivity accounts for about 114% of the cross sectional dispersion in
size in levels and 122% in growth. About 93% of this variation is accounted for quality/appeal
but 7% by technical efficiency. Composite wedges dampen dispersion in establishment size
relative to their absence in an exact compensating amount (e.g., wedges dampen dispersion
in levels by about 14% and 22% in growth). This dampening is even more extreme in the
tails of the distribution. Plants in the bottom(top) productivity quartile are 42% larger (24%
smaller) than efficient. Dispersion in input prices accounts for about half of this dampening
component, more from wages than prices of material inputs. Markups play a negligible role on
average–but explain a sizable wedge for the most highly productive plants–and the remaining

3For production function estimation using proxy methods, see, e.g. Ackerberg, Caves and Frazer (2015);
De Loecker et al. (2016). For demand function estimation see, e.g., Hottman, Redding and Weinstein (2016);
Foster, Haltiwanger and Syverson (2008).
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residual wedge captures mostly revenue (rather than factor-biased) unobserved distortions.
Even though composite wedges dampen dispersion in size by a relatively modest 14%,

the composite wedges imply large aggregate productivity losses of 37.6% with respect to
efficiency. This contrast stems from the important role of wedges in the tails of the size
distribution. Markups fit this narrative well, with dispersion in markups having a negligible
impact on the size distribution but leading to a sizable 10.5% aggregate efficiency loss. This
contrast is because markups affect precisely the highest productivity (and largest) plants.
Similar contrasts apply to other components of wedges. Input price heterogeneity dampens
the size distribution by 7% but alone implies a 32% efficiency loss, most of it driven by
quality-adjusted wage heterogeneity. Residual sales wedges dampen the size distribution
by 5% but alone imply 16% efficiency losses.4 As we demonstrate, these wedges especially
impact the tails of the distribution of size.

The dominant role of quality-adjusted productivity (rather than wedges) in accounting
for the dispersion in size has implications for aggregate productivity. Efficient aggregate
productivity (i.e., aggregate productivity in the absence of composite wedges) is 152% larger
than it would be in the absence of dispersion in quality-adjusted productivity. The aggregate
productivity “gain” from dispersion in quality-adjusted productivity is entirely driven by
dispersion in quality/appeal, with a negligible role of dispersion in technical efficiency.

Our joint estimation procedure yields more pronounced concavity of the revenue function
than implied by methods based solely on data for revenue and input use. These differences
have important implications for the quantification of the role of determinants of the size
distribution as well as aggregate allocative efficiency. For example, using traditional meth-
ods yields that dampening composite wedges account for -24% rather than -14% of the sales
variability. Traditional methods also don’t permit decomposition of quality-adjusted produc-
tivity into its quality/appeal and technical efficiency components nor the decomposition of
composite wedges into input price dispersion, idiosyncratic markups, and residual wedges.

There are antecedents of some of our results in the literature. First, the dominant role of
demand/quality/appeal in accounting for variation in plant heterogeneity has been featured
in Foster, Haltiwanger and Syverson (2008), Foster, Haltiwanger and Syverson (2016), and
Hottman, Redding and Weinstein (2016). However, our approach is based on joint estimation
of the production and demand system in a rich environment with multiproduct producers
that use multiple intermediate inputs, both of which are subject to product turnover. This
allows us to contrast the role of demand to that of technical efficiency and show that the
latter is non-negligible in explaining establishment performance. Second, the decomposition
of composite wedges into multiple components is a novel feature of our analysis. Much of
the literature has focused on either composite wedges (e.g. HK) or on specific individual
components such as markups but without integrating them with other sources to assess their
relative roles. For markups, moreover, we discuss below the critical question is how such
markups are identified. Third, using a composite or residual marginal cost approach from the
HRW framework masks a non-negligible positive contribution of technological improvements
by lumping them together with negatively correlated residual wedges and input prices, which
can only be uncovered by bringing together price/quantity data on both outputs and inputs.

4The efficiency costs from these three sources individually add to more than the overall efficiency loss due
to the interactions between them.
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In particular, the -6.5% contribution of the composite HRW “cost” residual to the variance
of sales growth in our data reflects a positive contribution of 9.1% of cost factors (14.2%
of technical efficiency and -5.1% from input prices), and an additional drag of -15.6% from
residual wedges, which are not inherently a cost/supply side factor.

A novel finding relative to the literature is our identification of variation in quality-
adjusted input prices as an important source of variation. Plant-specific input prices have
been difficult to measure especially taking into account quality adjustment. The variation
in quality-adjusted input prices that play an important dampening factor in size dispersion
might reflect many factors, including the geographic segmentation of markets as well as
institutional barriers or other frictions in the market. Such segmentation and frictions might
be present in both intermediate input and labor markets. We don’t identify these frictions
but our analysis takes an important step forward by highlighting this variation. Most of the
literature only identifies composite wedges indirectly through revenue productivity dispersion
with any input price dispersion implicitly reflected in the measured revenue productivity
dispersion.

Our analysis provides new insights into the ongoing debate about the role of markups as
a drag on aggregate productivity. Instead of the indirect estimation approach of De Loecker,
Eeckhout and Unger (2020), we jointly estimate the production and demand structure of
the economy with heterogeneous markups that emerge from the assumed oligopolistic struc-
ture. In this respect, our structural approach to markups is similar to Hottman, Redding
and Weinstein (2016) and Edmond, Midrigan and Xu (2018). By integrating this approach
with our rich data and estimation, we provide guidance on the contribution of markups in
composite wedges. Some recent papers investigating the drag on productivity from markups
use all of the dispersion in revenue productivity to identify markups (e.g., Baqaee and Farhi
(2020) and De Loecker, Eeckhout and Mongey (2021)).5 Our findings do not support this
strong assumption as we find a relatively minor role for markups in accounting for revenue
productivity dispersion (i.e., equivalent to composite wedges in our framework) and in turn
the unweighted size distribution of activity. However, we find a substantial role for markups
in accounting for the drag on aggregate productivity from wedges given that we find that
markups are the highest for the plants with the highest quality-adjusted productivity (and
in turn largest size).

Our application is to an economy where wedges/distortions arguably play a larger role
than in the US. Our results on the allocative efficiency effects of composite wedges for the
Colombian manufacturing sector are in the broad range found by the literature that applies
the HK method to developing countries, including those in Latin America. We thus see as
likely that the relative role we find for Colombia for the different components of composite
wedges (input price variability, markups, and residual wedges) applies more widely to similar
countries. At the same time, we also find quantitatively similar results for the relative role
of cost vs. demand and markup components to those found with data for the US by HRW ,
which is an indication that our results on the decomposition of the relative role of demand
vs. efficiency and cost factors shed light on that role for a variety of environments.6

5De Loecker, Eeckhout and Mongey (2021) use an oligopolistic structural model but target the sales-
weighted change in markups from the indirect De Loecker, Eeckhout and Unger (2020) that uses the dispersion
in cost shares of revenue of variable factors to identify markups.

6Panel A of Table X of HRW shows that demand (combining appeal/scope) accounts for 107% of firm
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The paper proceeds as follows. Section 2 presents our framework. We then explain the
data used in our empirical work and the approach we use to measure attributes, including the
joint estimation of the parameters of production and demand, respectively in sections 3 and
4. Our results on the drivers of size and growth dispersion are presented in section 5, while
6 presents implications for aggregate efficiency. Section 7 examines the value added of our
joint estimation approach, by contrasting our results with those obtained with our framework
and alternative estimation methods. Section 8 concludes by providing a more comprehensive
view on the implications of our analysis, and on open questions for future research.

2 Theoretical framework

We build a model of plant optimal behavior given plant attributes in the context of multi-
product plants and a nested CES demand. The model nests the HK and HRW frameworks
to derive the theoretical relationship between size and underlying attributes for multiprod-
uct plants that exhibit appeal/quality differences within and between plants. The attributes
we measure are: 1) the efficiency of the establishment’s productive process (which we term
TFPQ as in Foster, Haltiwanger and Syverson (2008), though we generalize the concept to
producers of heterogeneous goods); 2) appeal/quality;7 3) unit prices for inputs, in particu-
lar, material inputs and labor; 4) markups. The conceptual framework below defines each of
these components. We also permit wedges between the theoretical prediction of a plant’s size
given its observed attributes and its size observed in the data.8 (We use the words “plant”
and “establishment” interchangeably.)

Measuring TFPQ and appeal/quality in the context of multiproduct producers requires
defining output at the level of the plant. In this multiproduct-establishment context, it is
not possible to define real output without assumptions about demand. The concept of real
output “in theory equals nominal output divided by a price index, but the choice of price
index is not arbitrary: it is determined by the utility function” (Hottman, Redding and
Weinstein, 2016, page 1349). We thus present our framework starting with the demand side
and its implications for price and output measurement. We then move to the plant’s problem.
Next, we show how our framework nests those by HK and HRW . Finally, we examine how
aggregate productivity is impacted by the different plant attributes we measure, including
wedges between theory and data.

sales growth in their data, compared to our finding of 107% in the Colombian data (averaging across the life
cycle). Combined cost factors are a drag of -7% in HRW’s application, while if we combine the contributions
of efficiency, input prices, and residual wedges that we find for Colombia, we account for about -7% as well.

7Hsieh and Klenow (2009, 2014) use the term TFPQ, to refer to a composite productivity measure that
lumps together technical efficiency and demand shocks. We refer to this composite concept further below as
TFPQ HK , as a reference to Hsieh and Klenow (2009, 2014). Haltiwanger, Kulick and Syverson (2018)
explore properties of TFPQ HK using U.S. data.

8Compared to HK’s distortions, these wedges are narrower because we observe variation in input prices
and markups not present in HK’s data. As we show below, HK’s distortions are a composite of input prices,
markups, and our residual wedges.
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2.1 Demand

Establishments produce multiple products and face demand for each of the products that
depends on their quality. Taking into account multiproduct producers is important in our
context, where two-thirds of observations correspond to multiproduct producers. The the-
oretical structure is such that we can measure the output of a multiproduct producer as
revenue deflated with an appropriate establishment-level price index. As long as different
products within an establishment are not perfect substitutes, that price index reflects prod-
uct turnover and changing product appeal across existing products. To take this theory to
the data we use the CUPI approach developed by Redding and Weinstein (2020) and also
build on insights of Hottman, Redding and Weinstein (2016).

Consumers derive utility from a composite CES utility function, with a CES layer for es-
tablishments, indexed by f , and another for products (j) within establishments. Consumer’s
utility in this general CES structure in period t is given by:

U (Q1t, ..., QNt) = Qt =

(∑
It

dftQ
σ−1
σ

ft

) σ
σ−1

(1)

where Qft =

∑
Ωf

t

dfjtq
σw−1
σw

fjt


σw

σw−1

(2)

where pfjt is the price of qfjt, It is the set of establishments in period t, and
∑

It

∑
Ωf

t
pfjtqfjt

= Et.
An establishment f ’s real output, Qft, is a CES composite of individual products Qft =(∑
Ωf

t
dfjtq

σw−1
σw

fjt

) σw
σw−1

, where qfjt is period t sales of good j produced by establishment f ,

the weights dfjt reflect consumers’ relative preference for different goods within the basket
offered by establishment f , σw is the elasticity of substitution between products within f ,
and Ωf

t is the basket of goods produced by f in year t. Products within establishments
are not perfect substitutes so that tracking product turnover and changing product appeal
within establishments is critical for measuring establishment-level output.

dfjt and dft correspond to the weight, in consumer preferences, of product fj in estab-
lishment f ′s basket of products, and of establishment f in the set of establishments. We
impose the following normalizations:

∏
Ωf

t,t−1

d

1

∥Ω
f
t,t−1∥

fjt = 1;
∏
It

d
1

∥It∥
it = 1. (3)

where Ωf
t,t−1 is the set of products produced by f in both t and t−1. Given normalizations in

equation (3), we refer to dfjt and dft as, respectively, product (within establishment) and es-
tablishment appeal/quality or demand shocks. Product appeal dfjt captures the valuation of
attributes specific to good fj relative to other goods produced by establishment f . Establish-
ment appeal dft captures attributes that are common to all goods provided by establishment
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f , such as the establishment’s customer service and the average quality of establishment f ’s
products. Both establishment and product appeal may vary over time besides varying across
establishments.9 Consumer optimization implies that the period t demand for product fj
and the establishment revenue are, respectively, given by

qfjt = dσftd
σw
fjt

(
Pft

Pt

)−σ (
pfjt
Pft

)−σw Et

Pt

(4)

Rft = QftPft = dσftP
1−σ
ft

Et

P 1−σ
t

(5)

where

Pt =

(∑
It

dσftP
1−σ
ft

) 1
(1−σ)

(6)

Dividing (5) by Pft and solving for Pft, we obtain

Pft = DftQ
− 1

σ
ft = DtdftQ

− 1
σ

ft (7)

where Dt =
(

Et

P 1−σ
t

) 1
σ
and the establishment-level price index is given by:

Pft =

∑
Ωf

t

dσw
fjtp

1−σw
fjt

 1
(1−σw)

(8)

Given the nested CES demand, the establishment will charge the same markup on all
products.10

Using equation 5, establishment appeal (dft) can be measured as sales holding prices con-

stant: dft =
R

1
σ
ftP

(σ−1
σ )

ft

Dt
. This is akin to quality as defined by Hottman, Redding and Weinstein

(2016); Khandelwal (2010); Hallak and Schott (2011); Fieler, Eslava and Xu (2018), and oth-
ers. Foster, Haltiwanger and Syverson (2016) interpret establishment appeal as capturing
the strength of the business’ client base.

9We follow Redding and Weinstein (2020) in our treatment of product entry and exit. They don’t formally
model the decisions to add and subtract products but rationalize the entry and exit of products through
assumptions on the patterns of product specific demand shocks. That is, they assume products enter when
the product specific demand shock switches from zero to positive and exits when the reverse occurs. We
rationalize product entry and exit in the same manner. We consider multi-product plants mostly for the
purpose of obtaining a plant-level price deflator that takes into account changing multi-product activity.

10See Appendix S2 of Hottman, Redding and Weinstein (2016). In this nested environment the producer’s
optimization problem can be decomposed into two steps. The producer first chooses the composite index of
products. It then chooses individual products to minimize the composite total cost subject to the optimal
level of producer-level output. It is optimal for the producer to equate the ratio of marginal costs across
products to the ratio of marginal utilities. Since consumer maximization yields that the ratio of marginal
utilities across products is equal to the ratio of prices this implies the markups must be the same across
products. One important difference with Hottman, Redding and Weinstein (2016) is that we don’t permit
product-specific random cost shocks.
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Equation (8) defines establishment-level prices. Since (8) depends on unobservable σw and
dfjt, and thus cannot be measured readily from observables, we use Redding and Weinstein’s
(2020) CES Unified Price Index (CUPI) approach to express (the annual change in) this price
index in terms of observables. Redding and Weinstein (2020) and Appendix A show that the
CUPI provides the appropriate empirical analogue of our theoretical price index (8). The
CUPI adjusts prices to take into account the evolution of the distribution of in-plant product
appeal shifters dfjt, emanating both from changes in appeal for continuing products and the
entry/exit of products. This is crucial in our setting, since we define real output as deflated
revenue, and thus our deflator needs to properly take into account changes in appeal from
these sources.

In particular, the CUPI log change in f ′s price index is given by:

ln
Pft

Pft−1

=
∑
Ωf

t,t−1

ln

(
pfjt
pfjt−1

) 1

∥Ω
f
t,t−1∥ +

1

σw − 1

(
lnλQRW

ft + lnλQF
ft

)
(9)

Defining as sfjt the share of f
′s period t revenue represented by product j (sfjt =

pfjtqfjt
Rft

),

λQF
ft =

∑
Ω
f
t,t−1

sfjt∑
Ω
f
t,t−1

sfjt−1
is Feenstra’s (1994) adjustment for within-plant appeal changes from the

entry/exit of products, allowing us to take product entry and exit into account. Simi-
larly, defining s∗fjt as the share that product j represents in the revenue that f obtains

in t from products that belong to the bundle Ωf
t,t−1, λQRW

ft =
∏

Ωf
t,t−1

(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1

∥Ω
f
t,t−1∥

is Redding and Weinstein’s (2020) adjustment for changes in relative appeal for continu-
ing products within the plant, which deals with the consumer valuation bias that affects
traditional approaches to the empirical implementation of theory-motivated price indices.11

The derivation of the CUPI price index from our theoretical price index 8 (Appendix A)

requires imposing the normalization that
∑

Ωf
t,t−1

ln d

1

∥Ω
f
t,t−1∥

fjt = 0. That is, the CUPI adjusts

for relative appeal changes within the plant, while average appeal changes for the plant are
captured by dft.

Building recursively from a base year B and denoting P ∗
ft =

t∏
l=B+1

[ ∏
Ωt,t−1

(
pfj

pfjt−1

) 1

∥Ωt,t−1∥
]
,

ΛQRW
ft =

t∏
l=B+1

[(
λQRW
fl

)]
and ΛQF

ft =
t∏

l=B+1

[(
λQF
fl

)]
, we obtain the empirical price index in

levels:

11Sato (1976) and Vartia (1976) show how the theoretical price index can be implemented empirically under
the assumption of invariant firm appeal shocks and constant baskets of goods. Feenstra (1994) derives an
empirical adjustment of the Sato-Vartia approach that takes into account changing baskets of goods, keeping
the assumption of a constant firm appeal distribution for continuing products. It is this last assumption that
the UPI relaxes.
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Pft = PfB ∗ P ∗
ft ∗

(
ΛQRW

ft ΛQF
ft

) 1
σw−1

(10)

= PfB ∗ P ∗
ft ∗

(
ΛQ

ft

) 1
σw−1

where PfB is the plant-specific price index at the plant’s base year B (see Appendix A).

2.2 Plant Optimization

We now specify the establishment-level problem. We specify a framework such that establish-
ments that produce multiple products matter, and this occurs in three dimensions. First, we
specify our cost/production structure directly at the establishment-level, rather than setting
up product specific cost/production functions as in Hottman, Redding and Weinstein (2016).
We make this assumption for more than the convenience that our data on input use are at
the establishment level. Our view is that, if one queried establishments (plants) to specify
input costs (capital, labor, materials, and energy) on a product specific basis, most would be
unable to do so since multiple costs are shared across products (i.e., there is joint production).
That is, an establishment is not simply a collection of separable lines of production. It is, in
itself, an empirically relevant object. A second sense in which establishments matter in our
framework is that we depart from monopolistic competition: some establishments may be
large enough in the market that they don’t take the sectoral output price as given. Third,
there may be cannibalization between products of the same establishment.12

In the model, the establishment chooses its size optimally given technical efficiency, qual-
ity, input prices, and residual wedges. In the spirit of an accounting exercise, the framework
remains silent about the sources of these attributes and rather asks how the establishment
adjusts its size given those attributes at time t, and contingent on survival to that time.
Further below we discuss our explorations of endogenous innovation and exit.13

Consider an establishment indexed by f , that produces output Qft using a composite
input Xft to maximize its profits, with technology

Qft = AftX
γ
ft = aftAtX

γ
ft (11)

12It is potentially of interest to also consider the firm which may consist of multiple establishments. One
practical reason to focus on establishments is that, while aggregation across establishments of the same
firm is possible in the manufacturing survey, ownership changes affect longitudinal linkages for firms, while
establishments in the survey keep their identifiers over time independent of ownership changes. We also
think that establishment is an appropriate level of aggregation for decision-making for a number of reasons.
First, more than 90% of firms in Colombia are single-establishment firms. Second, even for multi-units, profit
maximization of the firm would typically involve profit maximization at each establishment. There are some
issues that also involve the firm such as financing and there may be interactions between establishments of
the same firm worth considering. These are interesting issues we leave for future work.

13For instance, the seminal models of Hopenhayn (2016); Melitz (2003), and much of the work that has
since followed in Macroeconomics and Trade. Endogenous productivity-quality growth has made its way to
these models more recently (e.g. Atkeson and Burstein, 2010; Acemoglu et al., 2018; Hsieh and Klenow, 2014;
Fieler, Eslava and Xu, 2018) . The firm’s efforts to strengthen demand may include investments in building
its client base (Foster, Haltiwanger and Syverson, 2016), and adding new products and/or improving the
quality of its pre-existing product lines. Those to strengthen TFPQ may include better management of the
production process (e.g. Bloom and Reenen, 2007) or acquiring better machines.
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Aft is the establishment’s technical efficiency, which we term TFPQ following Foster,
Haltiwanger and Syverson (2008). Aft has an aggregate and an idiosyncratic component (At

and aft). γ is the returns to scale (in production) parameter. Equation (11) defines aft as
the (idiosyncratic) efficiency of the productive process: how much output the establishment
obtains from a unit of a basket of inputs.

The establishment faces demand given by (7). Multiplying (7) by Qft we obtain:

Rft = DftQ
1− 1

σ
ft (12)

The establishment chooses its scale Xft to maximize profits

Max
Xit

(1− τft)Rft − CftXft = (1− τft)DftA
1− 1

σ
ft X

γ(1− 1
σ )

ft − CftXft

taking as given Aft, Dft, and unit costs of the composite input, denoted Cft. For devel-
oping our theoretical predictions, we treat input prices as exogenous and potentially idiosyn-
cratic for the composite input.

There may be idiosyncratic residual wedges τft, that lead to a gap between an estab-
lishment’s observed scale and that which would be implied by the static model given its
measured attributes.14 Such wedges capture, for instance, adjustment costs to changing the
scale, changing the mix of inputs, or building up a customer base; product-specific tariffs;
financing constraints; information frictions; and size-dependent regulations or taxes. Ad-
justment costs break the link between actual adjustment and the “desired adjustment”15.
Financing constraints may similarly limit the ability of the establishment to undertake opti-
mal investments, and force it to remain smaller than optimal and even potentially exit the
market during liquidity crunches even if its present discounted value is positive.16 In the HK
framework wedges can also arise from idiosyncratic variability in input prices and markups
(see subsection 2.3), but we explicitly account for these sources of heterogeneity, so that they
are not lumped into τft in our framework.

The resulting τft may be correlated with plant attributes themselves. By their very nature,
adjustment costs and financing constraints are typically correlated with plant attributes.
Size-dependent regulations are another prominent example of correlated wedges.17

We impose Cournot competition to allow establishments to hold market power, so that an
establishment’s market share may be non-negligible.18 This also implies that, in choosing its
optimal scale, an establishment does not take as given the aggregate price index, Pt. Under
these conditions and our CES demand structure, variability in markups across establishments
stems from market power:

14As in Restuccia and Rogerson (2008); Hsieh and Klenow (2009). Further below, we also consider factor-
specific distortions that, for a given choice of Xit, affect the relative choice of a given input with respect to
others.

15See, for instance, Caballero, Engel and Haltiwanger (1995, 1997); Eslava et al. (2010); Asker, Collard-
Wexler and De Loecker (2014)

16Gopinath et al. (2017); Fieler, Eslava and Xu (2018)
17E.g. Garćıa-Santana and Pijoan-Mas (2014); Garicano, Lelarge and Van Reenen (2016).
18Alternatively assuming Bertrand competition has little effect on our model and our results. Under both

Cournot and Bertrand competition, the markup is a function of the plant’s market share (see equation 13).
The functional form for the markup is the only change between the two cases in the theory
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µft =
σ

(σ − 1)

1

(1− sft)
(13)

where µft is the establishment’s markup and sft =
Rft

Et
(proof: Appendix D). As in Hsieh

and Klenow (2009, 2014), marginal cost is defined inclusive of residual wedges, so that

Pft = µft ∗
∂CTft

∂Qft

(1− τ)−1 (14)

where CT is total cost.
In our application, the demand function and production function parameters are constant

across establishments within sectors (at the three digit level of the ISIC revision 2 classifica-
tion for Colombia, of which there are 23 manufacturing sectors). All technological differences
across plants within sectors are thus lumped into Aft dispersion. An establishment’s relevant
market, for the purpose of calculating its market share and markup, is defined as the group
of producers of the plant’s most important CPC 3-digit product, of which there are 112 such
groups, so that sft is f ’s revenue share in its CPC 3-digit group.

Profit maximization yields optimal input demand Xft =

(
DftA

1− 1
σ

ft γ

Cftµft(1−τft)
−1

) 1

1−γ(1− 1
σ )
. Plug-

ging into 11 and then into 12, we obtain optimal sales and life-cycle growth of sales as
functions of measured attributes (Dft, Aft, µft, and Cft), wedges τft, and parameters:

Rft = dκ1
fta

κ2
ftpm

−ϕκ2

ft w−βκ2

ft µ−γκ2

ft (χ̂tχft)
1− 1

σ (15)

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−ϕκ2
(
wft

wf0

)−βκ2
(
µft

µf0

)−γκ2
(
χ̂t

χ0

χft

χf0

)1− 1
σ

where κ1 = 1

1−γ(1− 1
σ )
, κ2 =

(
1− 1

σ

)
κ1, and we have further assumed Xft = K

β
γ

ftL
α
γ

ftM
ϕ
γ

ft,

so that Cft is the corresponding Cobb-Douglas aggregate of different input prices, inclusive
of any relative distortions across the prices of the different inputs (factor-biased distortions).
dft, aft, pmft and wft are, respectively, the idiosyncratic components of Dft, Aft, Pmft and
Wft.The second line is obtained by dividing each optimal outcome in period t by its optimal
level at birth (t = 0)(see Appendix B).19 Aggregate components, Dt, At and Ct, as well
as other factors that affect all plants equally, are lumped into χt and χ̂t. The focus of our
empirical analysis is on idiosyncratic attributes and behavior, so these aggregate components
are later differenced out.

Among input prices, two are observed in the data: the price of material inputs, Pmft,
and average wage per worker, Wft. Empirically we consider multiple material inputs and
make efforts to take into account material input heterogeneity through quality-adjusting
prices. In particular, we use a plant-level price index for materials, pmft, using information
on prices and quantities of material inputs at the detailed product class level. We construct
pmft using an analogous approach to that used to construct output prices, which takes into

19There is some slight abuse of notation here as t is used for calendar time and, in this expression, to refer
to age when we express the ratio of these variables at age t to age at birth (t = 0) to express growth over the
life cycle.
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account quality heterogeneity across different material inputs used by the plant, changes in
the mix of inputs, and changes over time in the relative quality of existing inputs. We also
measure material inputs deflating material expenditure by pmft. We similarly attempt to
quality-adjust wages using information on different types of workers.

Crucially, χft = (1− τft)
γκ1 ∗

(
rftχ

K
ft

)−ακ1 includes revenue distortions τft and the
unobserved idiosyncratic user cost of capital, inclusive of distortions with respect to the
prices of other inputs (factor-biased distortions). χft thus captures idiosyncratic wedges

from different sources, including factor-biased and factor-unbiased. We refer to χ
1− 1

σ
ft =

(1− τft)
γκ1(1− 1

σ )
(
rftχ

K
ft

)−ακ1(1− 1
σ ) as a “residual wedge”.

Equation system (15) is the focus of our analysis of the distribution of establishment
revenue and establishment revenue growth. We start with the level and growth of (idiosyn-
cratic) attributes that we can measure: quality/appeal or “demand shocks” (dft), measured
as a residual from equation 5; technical efficiency or TFPQ (aft) measured as a production
function residual; markups (µft) measured using equation 13; and wages and material input
prices (wft, pmft). The residual wedges χft that an establishment faces are measured as an
age-specific residual. Although we do not directly measure the (adjusted) user cost of capital
to be able to dissect χft into its revenue and factor-biased components, in the Appendix I
we implement an indirect approach to this further decomposition.

We estimate χft taking observed attributes as given. However, we do explore the empirical
cross-sectional relationship between those attributes and wedges. And, although we assume
the plant takes its attributes as given in choosing its size, we also explore the relationship
between proxies for investment in innovation, Dft and Aft, to shed light on the determinants
of the latter. This is done in Appendix E. Finally, we focus on decomposing the determinants
of size and growth of surviving establishments up to any given age, but include robustness
analysis separating survivors from exits in Appendix H. We conclude that our findings for
plants that survive up to age t are largely driven by the establishments that survive at least
one more year, despite exiting plants exhibiting much worst quality-adjusted productivity
and more marked negatively correlated wedges from input prices.

Notice also that, although we don’t explicitly model dynamic frictions, we take the short-
cut in recent literature on misallocation to permit wedges or distortions between frictionless
static first-order conditions and actual behavior (e.g. Hsieh and Klenow, 2009). Such distor-
tions and wedges might capture factors that induce dynamic behavior such as adjustment
costs, information frictions, and distortions arising from the business climate.20 This shortcut
enables us to use a simple static model of optimal input determination to frame our analysis
of size and growth between birth and any given age. We permit the wedges or distortions to
vary by establishment age.

20This shortcut has limitations as the idiosyncratic distortions that we permit don’t provide the discipline
that formally modeling dynamic frictions imply. See, e.g., Asker, Collard-Wexler and De Loecker (2014);
Decker et al. (2020); David and Venkateswaran (2019). But it has the advantage in subsuming in a simple
measure different types of frictions and distortions, including those that capture dynamic considerations.
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2.3 Decomposing HK’s TFPRft and HRW’s marginal cost

Our framework nests HK’s on the supply side and HRW’s on the demand side. We now
explain how the HK and HRW approaches are nested into ours, and how our integration
of the two frameworks allows us to further decompose the residual heterogeneity, shedding
light on the factors that determine those residuals and on their empirical role.

In absence of data on input and output prices, HK decompose revenue into a measure of
quality-adjusted productivity that combines our TFPQft and Dft shocks, which we label as
TFPQ HKft, and a residual wedge that captures all determinants of size other than technical
efficiency and quality.21 Define a plant’s quality-adjusted productivity as TFPQ HKft =

AftD
1

1− 1
σ

ft . Starting from revenue in equation 12, TFPQ HKft can be measured using solely
revenue and input data, as long as estimates of γ and σ are available:

TFPQ HKft = R
1/(1− 1

σ
)

ft /Xγ
ft = AftD

1

1− 1
σ

ft (16)

A widely used implication of HK’s framework is that wedges can be estimated from the
idiosyncratic component of TFPRft =

Rft

Xft
. Replacing into (12) optimal input demand

Xft =

(
DftA

1− 1
σ

ft γ

Cftµft(1−τft)
−1

) 1

1−γ(1− 1
σ )

we obtain

TFPRft =
Cftµft

γ (1− τft)
(17)

TFPRft variability reflects variation not only in τft, but also in markups and input
prices.22 Notice also that, plugging Xft into 12 and using 16 and 17 to label composite
terms, revenue can then be expressed as:

Rft =

[
TFPQ HKft

(γ ∗ TFPRft)
γ

] 1− 1
σ

1−γ(1− 1
σ ) (18)

The HK wedge TFPRft is a composite measure of wedges, just as quality-adjusted
productivity TFPQ HK is a composite measure of efficiency and demand/quality/appeal.
A crucial insight from HK is that TFPRft heterogeneity induces large distortions in the size
distribution of plants and associated large aggregate efficiency losses. Our ability to measure
µft and part of Cft (specifically pmft and wft allows us to decompose the composite TFPRft

into the contribution of those measurable components and a remaining residual sales wedge,

21See the appendix to Hsieh and Klenow (2009) where they extend their model to account for D shocks.
What we label TFPQ HK is what is called TFPQ by HK, but in their extended framework comprises
quality/appeal besides technical efficiency. Haltiwanger, Kulick and Syverson (2018) also explore properties
of TFPQ HK constructed from revenue and input data compared to TFPQ and demand shocks constructed
from price and quantity data.

22If, as originally defined in Foster, Haltiwanger and Syverson (2008), we rather defined TFPR as
Rft

Xγ
ft
,

TFPR dispersion would also reflect Aft and Dft dispersion. Their definition of TFPRft = PftAft applies
to the γ = 1 case. The relevant definition for a measure of wedges/distortions is equation 17.
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thus shedding light on the role played, in the losses identified by the HK framework, by
idiosyncratic markups and distortions in the labor market and other input markets.

In turn, the differential contribution of demand vs. cost-side shocks to plant sales is ex-
plored by Hottman, Redding and Weinstein (2016). Using the same CES demand structure
on which we rely, they decompose idiosyncratic sales as captured by equation (5) into the
contributions of observed plant prices and demand shocks obtained using the estimated elas-
ticity of substitution. They subsequently use 14 to decompose price into the contributions of
markups–computed as in equation (13)–and residual marginal costs. These residual marginal

costs, given by
∂CTft

∂Qft
(1− τft)

−1, thus capture idiosyncratic variation in costs from both input

price variability and technical efficiency, as well as residual wedges. However, these wedges
are not inherently driven by cost/supply side factors. For example, they could reflect the
adjustment costs associated with building up a customer base. Our ability to measure input
prices and technical efficiency (TFPQft) allows us to decompose their residual marginal cost
measure into these different sources to assess the role played by wedges vs. factors that truly
lie on the cost side, and to decompose the latter into its components related to observed input
prices and efficiency in production. HRW find a negligible role for their residual marginal
cost term; our approach allows us to uncover non-trivial roles for efficiency in production
and input prices in determining the size distribution of plants, offset by residual wedges that
mask the true importance of cost factor if not dissected. See Appendix J for greater details
on the relationship between HRW ′s framework and ours.

2.4 Aggregate Productivity and Aggregate Efficiency

We now derive an expression for aggregate productivity, TFPt, and show how TFPt and
efficiency relate to cross sectional variability in the components of TFPQ HKft and TFPRft

(equations 16 and 17).

Aggregate TFPt is given by Qt

Xt
= Et

Xt

1
Pt

= Et

Xt

(∑
It

dσftP
1−σ
ft

) 1
σ−1

. As shown in Appendix

K, replacing Pft by its equilibrium value, TFPt can be written as

TFPt = D
− σ

σ−1

t

∑
It

(TFPQ HKft

TFPRγ
ft

) 1

σ(1−γ(1− 1
σ ))

TFPRt

σ−1
1

σ−1

(19)

where we have defined TFPRt = PtQt

Xt
=
∑(

PftQft

Xft

Xft

Xt

)
and have used the fact that

TFPQ HKft = D
σ

(σ−1)

ft Aft.
Also notice that, normalizing all attributes of the plant around a sector*year mean (in

logs), we can write TFPRft =
Cftµft

γ(1−τft)
= Ctµt

γ(1−τt)
tfprft, where we use upper bars for aggregate

components and tfprft contains only the idiosyncratic components of Cft, µft and (1− τft).
We define efficiency as a situation where, using lower bars to denote idiosyncratic com-

ponents, cft = 1, µ
ft

= 1 and 1− τft = 1, and denote TFPt evaluated at this situation as

TFP eff
t . Further defining AEt =

TFPt

TFP eff
t

, where AE stands for “aggregate efficiency” , and

using 19, we obtain, after some manipulation
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AEt =

 1

Nt

∑
It


∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprt


−1

σ−1


1
σ−1

(20)

where ∆ft = d
σ

(σ−1)

ft aft =
TFPQ HKft

D
σ

σ−1
t At

; ∆̃t =

(
1
Nt

∑
It

∆

σ−1

σ(1−γ(1− 1
σ ))

ft

) 1
σ−1

; and

tfprt =

(∑
It

tfprft
Xft

Xt

)
.

An implication of 20 is that aggregate efficiency depends on the covariance between (a
function of the idiosyncratic components of) TFPQ HKft and TFPRft, and not only on

the dispersion of TFPRft. In particular, using E

∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


σ−1

= 1, equation 20 can

be written as:23

AEt =

cov

∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


σ−1

,

 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprt


1−σ
+ E

 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprt


1−σ


1
σ−1

(21)

Since 1−σ < 0, (composite) distortions that are negatively correlated with TFPQ HKft

and more disperse have negative effects on welfare.

23This decomposition is similar to that in Blackwood et al. (2021), who analyzed the sensitivity of measured
allocative efficiency to parameters that can be estimated from traditional revenue and input expenditure data.
Blackwood et al. (2021) also analyze the general case in which allocative efficiency depends on the covariance
between functions of TFPQ HKft and TFPRft. The special case of γ = 1 reproduces HK’s result that,
under a joint lognormal distribution for TFPRft and TFPQ HKft, and if factor-specific distortions are
absent, aggregate TFP depends on the dispersion of TFPR:

log TFPt =
1

σ − 1
log
∑
It

TFPQ HKσ−1
ft − σ

2
var(log TFPRft)

=
1

σ − 1
log(∥It∥) + E (log TFPQ HKft) +

(σ − 1)

2
var (log TFPQ HKft)−

σ

2
var(log TFPRft)
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3 Data

3.1 Annual Manufacturing Survey

We use data from the Colombian Annual Manufacturing Survey (AMS) from 1982 to 2012
(DANE, 1982-2013). The survey, collected by the Colombian official statistical bureau DANE,
covers all manufacturing establishments (=plants) belonging to firms that own at least one
plant with 10 or more employees, or those with annual production value exceeding a level
close to US$100,000. Our sample contains 19,326 plants over the whole period, with 5,434
plants in the average year. Over 90% of plants in the AMS (i.e. over 90% manufacturing
plants in Colombia with size over the inclusion threshold) belong to single-plant firms, so
that the distinction between plants and firms is not as crucial in our context as it is in others.

Surveyed establishments are asked to report their level of production and sales, as well
as their use of employment and other inputs, their purchases of fixed assets, and the value
of their payroll. We construct a measure of plant-level wage per worker by dividing payroll
into number of employees and obtain the capital stock using perpetual inventory methods,
initializing at book value of the year the plant enters the survey. Sector IDs are also reported,
at the 3-digit level of the ISIC revision 2 classification.24 Appendix Table C2 lists the 23
sector classes in our data.

A unique feature of the AMS, crucial for our ability to measure a variety of plant at-
tributes, is that inputs and products are reported at a detailed level. Plants report separately
each material input used and product produced, at a level of disaggregation corresponding
to seven digits of the ISIC classification (close to six digits in the Harmonized System, a level
such that refined soy oil is distinguished from unrefined soy oil and from refined sunflower
oil). For each of these detailed inputs and products, plants report separately quantities and
values used or produced, so that plant-specific unit prices can be computed for both individ-
ual inputs and individual outputs. The average (median) plant produces 3.77 (3) products
per year and employs 12.05 (10) inputs per year (Table 2).

By taking advantage of product-plant-specific prices, we produce plant-level price indices
for both inputs and outputs, and as a result, generate measures of productivity based on
output, estimate demand shocks, and consider the role of input prices in plant size. Details
on how we go about these estimations are provided in section 4. Our product level data
are not at the detailed UPC code level used by Hottman, Redding and Weinstein (2016),
which implies the limitations discussed in the introduction, but we observe them at the
plant-by-product-by-year level, which offers key advantages relative to other data sources.
Unlike UPC codes, our product-level information is available by plant (physical location
of production) rather than the aggregate firm, and is jointly observed with input use by
that plant. And, unlike transactions data for imports (used, for instance by Feenstra, 1994;
Broda and Weinstein, 2006), we observe them not only at the product level (at similar levels
of disaggregations with respect to imports transactions data) but by producer at a physical
location. Compared to analysis based on UPC codes, the higher aggregation of our data
implies that quality adjustments are likely captured as within product dfjt changes rather

24The ISIC classification in the survey changed from revision 2 to revision 3 over our period of observation.
The three-digit level of disaggregation of revision 2 is the level at which a reliable correspondence between
the two classifications exists.

17



than through the introduction of a new product code.
Each establishment is assigned a unique ID that allows us to follow it over time. Since a

plant’s ID does not depend on an ID for the firm that owns the plant, it is not modified with
changes in ownership, and such changes are not mistakenly identified as plant births and
deaths.25 There is exit in our sample, at a rate of approximately 7% per year. Our analysis
includes both continuers and exiters, which we examine separately in Appendix H.

The plant’s initial year of operation is recorded–again, unaffected by changes in ownership.
We use that information to calculate an establishment’s age in each year of our sample.
Though we can only follow establishments from the time of entry into the survey, we can
determine their correct age, and follow a subsample from birth. About a third of plants
in our sample are observed from birth. Based on that restricted subsample, we generate
measurement adjustment factors that we then use to estimate life-cycle growth even for
plants that we do not observe from birth.26 Our decomposition results are in general robust
to using the subsample observed from birth rather than the full sample, although estimated
with less precision and for a shorter lifespan.

4 Estimating TFPQ and quality/appeal

Measuring TFPQ and quality/appeal requires estimating the production and demand func-
tions, (11) and (7). Once the coefficients of these functions have been estimated, TFPQ is
the residual from (11) and quality/appeal is the residual from (7).

We implement a joint estimation procedure of (7) and (11). Jointly estimating the two
equations allows us to take full advantage of the information to which we have access to
separate supply from demand in the data. As a result, we can estimate production rather
than revenue elasticities, even for multiproduct plants, and simultaneously obtain unbiased
estimates of σ and σw. We impose a set of moment conditions that require less structure
overall, and weaker restrictions on the covariance between TFPQ and demand shocks, than
other usual estimation methods of the demand-supply system in multiproduct settings. This
is in part possible thanks to the fact that we have access to price and quantity information
for both inputs and outputs. Data on inputs inform the estimation directly about the pro-
duction side, thus allowing us to separate it from demand under weaker restrictions than
if we only used information on prices and quantities for outputs (as in, for instance, Broda
and Weinstein, 2006; Hottman, Redding and Weinstein, 2016). Data on prices allows us to
properly estimate both production and revenue elasticities.

Beyond the usual simultaneity biases and restrictions on supply vs demand, the estimation
of (11) and (7) faces the problem that, until we have an estimate of σw, we are unable to

25Plant IDs in the survey were modified in 1992 and 1993. To follow establishments over that period, we
use the official correspondence that maps one into the other. The correspondence seems to be imperfect (as
suggested by the apparent high exit in 92 and high entry in 93), but even for actual continuers that are
incorrectly classified as entries or exits, our age variable is correct (see further below).

26If B is the age of plant f when we first observe it in the survey, then for variable Z we estimate size at
age a relative to birth as Zfa/Zf0 = (Zf,a/Zf,B)(ZB/Z0)restricted where (ZB/Z0)restricted is average growth
from birth to age B in the restricted subsample observed from birth. This helps us deal with selection bias
without losing valuable information from plants first observed years after birth. Unadjusted average growth is
generally biased downwards, since (Zf,a/Zf,B) = 1 at age a=B, while generally in the sample (Zf,a/Zf,B) > 1.
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properly construct Pft, and thus Qft =
Rft

Pft
(see section 2.1). We therefore rely on Pft’s two

separate components from equation 10: P ∗
ft and ΛQ

ft.
27 We define

Q∗
ft =

Rft

PfBP ∗
ft

= Qft ∗
(
ΛQ

ft

) 1
σw−1

(22)

and proceed in three steps to address this limitation:

1. (This step is only sketched here, details are provided in the following subsection) Jointly
estimate the coefficients of the production function (11), the demand function (7), and

σw using Q∗
ft =

Rft

PfBP ∗
ft

= Qft ∗
(
ΛQ

ft

) 1
σw−1

and P ∗
ft =

Pft(ΛQ
ft)

−1
σw−1

PfB
as the respective

dependent variables of these two functions. We carry ΛQ
ft as a separate regressor in

each equation to deal with potential biases induced by the–at this point–still partial
estimation of revenue deflators. In particular, not explicitly accounting for changes in
product quality and variety within the plant leads to “quality” and “variety” biases in
the estimation of production function coefficients, as described by de Roux et al. (2021).
ΛQ

ft explicitly accounts for those changes, freeing our estimates from such biases. We

similarly introduce separately M∗
ft and ΛM

ft in the production function (where M∗
ft =

materials expenditure

PMfBPM∗
ft

, and ΛM
ft is the adjustment factor for the prices of materials analogous

to ΛQ
ft see Appendix A). The joint estimation is conducted separately for each three-

digit sector. The parameters {α, β, ϕ, σ, and σw} used in the analysis are those
estimated in this step.

2. Use the estimated elasticity σ̂w for the respective three-digit sector to obtain Pft =

PfB ∗ P ∗
ft ∗

(
ΛQ

ft

) 1
σ̂w−1

and subsequently Qft =
(

Rft

Pft

)
. Proceed in an analogous way to

obtain a quantity index for materials, Mft.

3. Using Pft, Qft,Mft (now properly estimated) and the estimated coefficients of the
production and demand functions, obtain residuals TFPQft and Dft. In estimating
TFPQft and Dft as residuals at this stage, we first regress Pft, Qft,Mft, Lft and Kft

on sector*year effects and use only the residuals from those regressions, so that from
this stage on, only idiosyncratic variation in TFPQft and Dft is considered. More
generally, our application only considers idiosyncratic (within sector-year) variation.

We now explain step 1 in detail.

4.1 Joint production-demand function estimation

We want to jointly estimate the log production and demand functions:

lnQft = α lnKft + β lnLft + ϕ lnMft + lnAft (23)

27We initialize each plant’s price index at PfB , which takes into account the average price level in year B
and the deviation of plant f ′s product’s prices from the average prices in the respective product category in
that year. Details are provided in Appendix A.
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and

lnPft = − 1

σ
lnQft + lnDft (24)

where Qft =
(

Rft

Pft

)
. Using (10) and (22), the system can be rewritten:

lnQ∗
ft = α lnKft + β lnLft + ϕ lnM∗

ft +
1

σw − 1
lnΛQ

ft −
ϕ

σw − 1
lnΛM

ft + lnAft (25)

and

ln(P ∗
ftPfB) = − 1

σ
lnQ∗

ft −
(

1

σw − 1

)(
σ − 1

σ

)
ln ΛQ

ft + lnDft (26)

In practice, we estimate the parameters of (25) and (26), which are natural transfor-
mations of the original production and demand functions, rather than those original forms.
This transformation enables us to specify the residuals from a log-linear specification which
in turn permits specifying the moment conditions and estimating the parameters from linear
GMM.

The usual main concern in estimating these functions is simultaneity bias. In the pro-
duction function, this is the problem that factor demands are chosen as a function of the
residual Aft. A standard approach to deal with this problem is the use of proxy methods as
in Olley and Pakes (1996); Levinsohn and Petrin (2003); De Loecker and Warzynski (2012);
Ackerberg, Caves and Frazer (2015, ACF henceforth) and many others. In the demand
function, simultaneity arises because both price and quantity respond to demand shocks.
Usual demand estimation approaches rely on assumptions regarding orthogonality between
demand and supply shocks at some particular level. Foster, Haltiwanger and Syverson (2008,
2016); Eslava et al. (2004, 2013) impose orthogonality between the levels of TFPQ and de-
mand shocks, while in Broda and Weinstein (2006); Hottman, Redding and Weinstein (2016)
double-differenced demand and marginal cost shocks are assumed orthogonal. We build on
these approaches, but take advantage of prices and quantities for both inputs and outputs,
and the consequent possibility of jointly estimating (25) and (26), to relax the assumptions
about covariance between demand and supply shocks that identify the elasticities of substi-
tution across and within establishments.

We assume that TFPQ and Dft follow the following flexible laws of motion:

lnAft = πA
0 + πA

1 lnAft−1 + πA
2 lnA2

ft−1 + πA
3 lnA3

ft−1 + ξAft

lnDft = πD
0 + πD

1 lnDft−1 + πA
2 lnD2

ft−1 + πA
3 lnD3

ft−1 + ξDft

That is, ξAft and ξDft are, respectively, the stochastic component of the innovation to TFPQ
and Dft. Given this structure, our identification of production and demand elasticities (α,
β, ϕ, σ, σw) uses standard linear GMM procedures, imposing the following set of moment
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conditions (further details provided in Appendix F):

E



lnM∗
ft−1 × ξAft

lnLft × ξAft
lnKft × ξAft
lnDft−1 × ξAft
lnAft−1 × ξDft

lnAft

lnDft


= 0 (27)

To write the moment conditions for Mft, Lft and Kft in 27, we assume that materials are
freely adjusted while the demand for capital and labor is assumed quasi-fixed. As traditional
in ACF-based methods, inputs respond to stochastic innovations to TFPQ contemporane-
ously or with a lag if, respectively, they are freely adjusted or quasi-fixed.28 Thus, in (27)
we require lagged materials demand to be orthogonal to current TFPQ innovations, while
L and K are required to be contemporaneously orthogonal to ξAft. The assumption that
K is quasi-fixed is standard, as is that indicating that M adjusts freely.29 L is also assumed
quasi-fixed in our context because important adjustment costs have been estimated for the
Colombian labor market (e.g. Eslava et al., 2013). We thus follow De Loecker et al. (2016)
in treating L as quasi-fixed for purposes of estimation.

Meanwhile, the conditions that Dft−1 must be orthogonal to ξAft while Aft−1 must be
orthogonal to ξDft identify σ and σw, following the logic that the slope of the demand function
can be inferred taking advantage of shocks to supply.30 Foster, Haltiwanger and Syverson
(2008, 2016); Eslava et al. (2013) also relied on the logic that shocks to production identify the
demand curvature, but imposed orthogonality between demand and technology shocks in lev-
els (Aft and Dft). This effectively precludes the possibility that establishments endogenously
invest in quality when they perceive better returns (as would be the case with higher TFPQ),
or that they acquire technologies that increase production costs to produce better quality.31

Hottman, Redding and Weinstein (2016); Broda and Weinstein (2006, 2010) address these
concerns by imposing orthogonality between double-differenced demand and supply shocks
(double differencing over time and varieties). Orthogonality between the double-differenced
shocks may still be a strong assumption if, even within product groups, changes in quality
require changes in production technologies.32 Given our ability to specify demand and pro-
duction separately using the price and quantity data of both output and inputs, we impose

28We also follow standard proxy methods and purge measurement error in a first stage of the estimation
(Appendix F).

29For lnMft−1 to be useful in the identification of ϕ, it must be the case that input prices are highly
persistent. The AR1 coefficient for log materials prices is 0.95 in our sample.

30Production elasticities are initialized at MCO estimates, while σ is initialized at the estimate from an IV
regression where TFPQft is used as an instrument in the demand equation, as in (e.g. Eslava et al., 2013).
Using this initial estimate for σ for each sector, σw is initialized at a level such that σw

σ equals the σw

σ ratio
for the median sector in HRW .

31R&D decisions that are endogenous to current profitability and affect future profitability, for instance,
are present in Aw, Roberts and Xu (2011). Their framework does not separately identify the demand and
technology components of profitability, but both could plausibly respond dynamically. In turn, the idea that
quality is more costly to produce appears in Fieler, Eslava and Xu (2018), to characterize cross sectional
correlations between quality and size.

32This is more of an issue for the earlier papers using harmonized trade data and not an issue for the recent
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E(lnDft−1 × ξAft) = 0 and E(lnAft−1 × ξDft) = 0 which permit a correlation between TFPQ
and demand even over time within the plant. While we are still taking advantage of shocks
to the supply curve to identify elasticities on the demand side, we only require that innova-
tions in technical efficiency in period t be orthogonal to demand in levels in t− 1, and that
innovations in demand in period t be orthogonal to TFPQ in levels in t − 1, where these
innovations come from a very flexible law of motion for TFPQft and Dft.

Notice also that TFPQ obtained as a residual from quality-adjusted Q is stripped of ap-
parent changes in productivity related to within-establishment appeal changes, eliminating
a source of correlation between appeal and technical efficiency stemming from measurement
error. Moreover, since we use plant-specific deflators for both output and inputs, our esti-
mation is not subject to the usual bias stemming from unobserved input prices (De Loecker
et al., 2016).33

We implement this estimation separately for each three digit sector of ISIC revision 2,
adapted for Colombia (CIIU-AC by its acronym in Spanish). There are 23 manufacturing
sectors at this level. The estimated factor and demand elasticities are summarized in Table 1
and listed in Appendix C. Our results reveal close to constant returns to scale in production
on average, but with non-negligible variation across three-digits sectors. The estimated
elasticities of substitution across products within the establishment and across establishments
stand at averages (over sectors) of 3.53 and 1.95, respectively, with substantial cross-sector
variation (see also Appendix C). The revenue function curvature parameter stands at an
average of 0.48, ranging between 0.18 and 0.69. For almost all sectors, this stands in sharp
contrast to the 0.67 curvature parameter implied by usual assumptions of CRS in production,
CES demand, and an elasticity of substitution of 3 (e.g. in HK). A correct estimation of
the level of σ is crucial in adequately determining the effect of wedges both on the size
distribution of plants and on aggregate efficiency, as will be clear in our results.

It is encouraging that we obtain plausible factor elasticities for all sectors at the three
digits sector level. Proxy methods for the estimation of production functions are usually
implemented in estimations at higher levels of aggregation, and frequently yield implausible
results–in particular negative estimated factor coefficients for several sectors–at finer levels
of disaggregation such as the one in our estimation.

Table 1: Factor and Demand Elasticities

β α ϕ σw σ σw/σ γ γ(1− 1/σ)

Average 0.37 0.14 0.52 3.53 1.95 1.81 1.03 0.48
Min 0.15 0.03 0.23 2.15 1.20 1.77 0.93 0.18
Max 0.65 0.28 0.69 4.98 2.75 1.88 1.20 0.69

Note: Estimated factor and demand elasticities for 23 different sectors.

We use the within-plant estimated demand elasticity σ̂w to construct lnPft = ln
(
PfBP ∗

ft

)
+

papers using barcode data such as Hottman, Redding and Weinstein (2016). Quality changes that require
higher costs would show up between but not within products with barcode data.

33De Loecker et al. (2016), use plant-level deflators for output but not for inputs. This induces a bias
stemming from unobserved input price heterogeneity.
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1
σ̂w−1

ln ΛQ
ft and subsequently recover Qft =

Rft

Pft
. We proceed in an analogous way to con-

struct pmft and Mft.
34 We then use Qft, Mft and Pft to obtain the residuals Aft and Dft.

We use the estimated σ (at the three digit level of ISIC revision 3) to obtain the markup
µft =

σ
(σ−1)

1

(1−sft)
. For markup estimation, we use plant f ’s market share sft as its revenue

share in its relevant product group, defined at the three digit group of the product classifi-
cation. Products are classified according to the international CPC classification. There are
111 product groups at the CPC three digit level (while our “sectors” classification, defined
using Colombian ISIC three digit level, has 23 classes), with an average number of plants
close to 49, and a median of 24. To illustrate the level of aggregation of product groups and
compare them to sectors, Appendix Table C3 lists 15 of the 111 product groups and Table
C4 provides the distribution of number of plants by product groups, while Table C2 lists the
23 sectors for which we estimate separate production and demand parameters.

From this point, we work only with the within-sector variability of all variables of interest.
In particular, we regress all outcome variables (revenue, employment, capital, materials,
output prices, and input prices) against sector*year effects, and from this point use only
residuals from those regressions. Also, as previously stated, when building TFPQ, D, and
µ we only exploit idiosyncratic (i.e. within sector*year) variation in the levels of outcomes.
It is these variables deviated from sector*year effects that we use when building life cycle
growth for any variable (

Zft

Z0t
for each variable Z for each variable Z).35

5 Results: Size distribution in Levels and Growth

5.1 Plant attributes

Table 2 presents basic summary statistics for (the idiosyncratic component of the log of)
sales, output, output prices, Aft, Dft, the residual wedge, markups, and input prices. The

residual wedge, χ
1− 1

σ
ft = (1− τft)

γκ1(1− 1
σ )
(
rftχ

K
ft

)−ακ1(1− 1
σ ), is obtained as a residual from

equation 15, since we have measures of all other components.36 We note that we have
adjusted materials prices for quality, but have not done the same for wages as yet due to
data constraints. Further below we quality-adjust wages for a subperiod for which this is
possible.

Table 2 shows that quality/appeal and technical efficiency are negatively correlated in
levels, consistent with Forlani et al. (2021), but weakly in our data. Also especially interesting
is the negative and strong correlation of residual wedges with TFPQ (-0.419) and demand
shocks (-0.156), indicating that the most highly productive plants face greater barriers, i.e.
correlated wedges. These basic correlation patterns are echoed in the role of different size
determinants below.

34I.e. we use the same measurement approach incorporating multi-materials inputs to construct the plant-
level deflator for materials, and use it to deflate expenditures in materials to arrive at materials inputs. For
each plant, we use for materials the same elasticity of substitution used for outputs.

35We also winsorize life cycle growth for each variable at 1% and 99% to eliminate outliers that may drive
the results of our decompositions.

36χt is no longer relevant once we focus solely on within sector*year variation.
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It is also worth noting that sales, quality/appeal, and TFPQ exhibit an important degree
of persistence, above 0.9 in all cases (column 2). Residual wedges are also persistent, but with
a much lower AR(1) coefficient of 0.727, which would be consistent, for instance, with these
wedges reflecting adjustment costs which imply gaps in revenue with respect to efficiency for
reasons that correlate with persistent revenue in a lumpy fashion.

Table 2: Descriptive Statistics

Panel A. Number of plants, number of products and materials per plant-year
Number of plants Number of products per plant Number of materials per plant

Total Avg. year Avg. P25 P50 P75 Avg. P25 P50 P75

19,326 5,434 3.77 1 3 5 12.05 6 10 15

Panel B.Standard deviations and correlation coefficient for outcomes and fundamentals
(within sector*year, all variables in logs, average sector)

Standard
Deviation

AR(1)
coefficient

Sales Output Output
prices

TFPQ D (quality
/ appeal)

Material
prices

Average
wage

Markup Structural
Wedge

Sales 1.560 0.981 1.000
Output 1.691 0.980 0.921 1.000
Output prices 0.632 0.958 0.000 -0.380 1.000
TFPQ 0.746 0.905 0.191 0.458 -0.728 1.000
D (quality/appeal) 0.892 0.977 0.930 0.724 0.342 -0.071 1.000
Input prices 0.593 0.949 -0.047 -0.102 0.155 0.274 0.011 1.000
Average wage 0.455 0.847 0.657 0.586 0.055 0.132 0.633 -0.017 1.000
Markup 0.074 0.971 0.487 0.451 -0.009 0.091 0.447 -0.020 0.338 1.000
Residual wedge 0.408 0.727 -0.143 -0.107 -0.066 -0.419 -0.156 0.001 0.046 0.109 1.000
Lagged D (quality/ap-
peal)

0.884 0.974 0.898 0.704 0.319 -0.088 0.962 0.007 0.632 0.446 -0.091

Note: Descriptive statistics are restricted to a sample of plants observations which have information on all measured plant attributes.

Markups display modest variation across plants in absolute terms and relative to the
variability in size. A few sector*year observations have dominant plants with very large
markups (Appendix C, Table C5). Markups are positively correlated with TFPQ, D, and
wages, besides plant size. They are also positively correlated with our residual wedge χft =

(1− τft)
γκ1 ∗

(
rftχ

K
ft

)−ακ2 .37

A few other attributes of TFPQft and Dft, explored in Appendix E, are telling of the
economic content of these residuals. Dft is positively correlated with different efforts for
marketing and product innovation. Conditional on sales, there is a strong positive correlation
between Dft and product innovation, as captured by the introduction of new high-price
products or increases in quality of existing products, reflected in large increases in their prices.
Dft is also positively correlated with efforts to build a client base, such as advertisement
expenditures and the use of the internet to provide customer support. TFPQft, in turn,
exhibits a strong positive correlation with investment in fixed assets, stronger than that

37The structural markup in our approach corresponds to a wedge-adjusted version of the widely used
empirical estimation of the markup in De Loecker and co-author’s work (2012; 2016; 2020). Denoting the
markup calculated with such approach as µDL , Appendix B shows that under the demand and production

structure in this paper the following relationship holds: µft = µDL
ft ∗ (1− τft) =

θv
ft

Cv
ft

Vft

PftQft

∗ (1− τft) where Vft

is some variable input, Cv
ft its unit cost and θvft is the output elasticity for the variable input. We find that

µ̂DL
ft = ϕ

pmftMft
Rft

, compared with µft, µ̂
DL
ft displays a much larger variance and much weaker correlations with

sales and demand shifters, and a stronger correlation with TFPQ.
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between Dft and investment once revenue has been controlled for. Conditional on sales,
technical efficiency (TFPQft) is negatively correlated with the introduction of high price
products, which suggests that producing high quality requires process efforts that induce a
trade-off between producing quantity and quality.

5.2 Plant attributes vs. size

We now explore the role of these different plant attributes in determining establishment
size. Equations 18 and 15 imply that revenue depends on quality-adjusted productivity
TFPQ HKft and composite distortions captured by (an inverse function of TFPRft) :

Rft =

[
TFPQ HKft

(γ ∗ TFPRft)
γ

]κ2

= dκ1
fta

κ2
ftpm

−ϕκ2

ft w−βκ2

ft µ−γκ2

ft (χ̂tχft)
1− 1

σ (28)

where κ1 =
1

1−γ(1− 1
σ )
, κ2 =

(
1− 1

σ

)
κ1, and γ and σ have been estimated as explained above.

Figure 1 shows the evolution, over the life cycle of plants with different levels of quality-
adjusted productivity TFPQ HKft, of actual sales and sales predicted based on the different
components of Rft in equation 28 (on a log scale, given large differences). Each panel
represents establishments in a given section of the distribution of TFPQ HKft. The dotted
line shows actual (average) sales, while the solid line corresponds to efficient sales, i.e. sales
as would be determined by the quality-adjusted productivity TFPQ HKft in the absence

of wedges: R̂ft =
[

TFPQ HKft

γγ

]κ2

. The gap between the two captures the composite wedge

emanating from TFPRft, which includes the effects of input prices, idiosyncratic markups,

and residual wedges. Efficient sales R̂ft are further decomposed in Figure 1 into those based

only on TFPQft (R̂′
ft =

[
TFPQft

γγ

]κ2

), corresponding to the dashed line, and the component

based on Dft, corresponding to the gap between the solid and dashed lines.
Three main messages emanate from Figure 1. First, though plants with higher levels

of quality-adjusted productivity are larger than lower productivity ones (right vs. left pan-
els), sizable wedges that are negatively correlated with TFPQ HKft imply dampened size
differentials over the productivity distribution with respect to the efficient levels. That is,
the distance between low and high TFPQ HK plants in their efficient size (solid lines)
is larger than the distance in actual size (dotted lines), and plants in the first quartile of
TFPQ HKft face large positive composite wedges, while the opposite is true in the upper
sections of the productivity distribution. These composite wedges are large: plants in the
bottom TFPQ HK quartile are on average 42% larger than efficient, and those in the top
quartile are 24% smaller with respect to that benchmark. Especially notable is the impact
in the tails as illustrated in the top 5%, where the dampening effect of wedges is very large.

Second, younger plants face larger composite wedges. This is especially the case in the
top sections of the productivity distribution: young high productivity plants are especially
undersized vis-a-vis their efficient size. 38

38In the top quartile of TFPQ HK, the size gap vs. efficiency of establishments up to two years old exceeds
34%, going up to 42% for the 95th percentile, while across all ages the average gap is 23%, as mentioned
above.
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Figure 1: Sales by Age. Actual and Efficient Based on TFPQ HK
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Note: Lines depict the average sales predicted by considering TFPQ and TFPQ HK and the actual observed average sales
based only on idiosyncratic variation. Information from the sample of plant observations for which all measured attributes are
observable. Quartiles are calculated for each age

Finally, the comparison between the solid and dashed lines (based, respectively on
TFPQ HKft and TFPQft) shows that efficient size differentials between the bottom and
top segments of the distribution are mostly due to Dft differentials. Although higher produc-
tivity plants are also more technically efficient, size differentials based only on TFPQ dwarf
overall differences in efficient size. Also, demand growth is the driver of life cycle growth,
while TFPQ is basically flat over the life cycle in all panels of the figure.

Figure 2 further decomposes the composite wedge into its components related to input
prices, markups, and residual wedges. The solid black line represents the composite wedge
and is equal to the gap between efficient and actual sales in Figure 1. The role of each of its
components is observed by shutting them down progressively: the grey solid line corresponds
to counterfactual composite wedges in the absence of input price heterogeneity and the dashed
line to a version where only residual wedges remain (no idiosyncratic markups or input prices).

Of the 42% (-24%) average composite wedge for plants in the bottom (top) quartile of
TFPQ HK, 19% (-13%) corresponds to input prices, as seen in the reduction of (absolute)
wedges when input price heterogeneity is shut down (grey solid line). We show further below
that almost all of the dampening effect of input prices on revenue variation is explained by
wages, with a minimal role for the prices of material inputs. Subsequently shutting down
idiosyncratic markups makes little difference in general, adding no more than 3 p.p. (grey vs.
dashed lines). That is, idiosyncratic markups play a minor role, explaining one percentage
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Figure 2: Composite Wedges by Age: The Role of TFPR and its Components
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Note: Lines depict average composite HK wedges and its components based only on idiosyncratic variation. Information from
the sample of plant observations for which all measured attributes are observable.

point or less of the composite wedge in most cases. The most important exception is the
case of establishments at the very top of the productivity distribution, where some plants
display very high markups that keep them undersized. In the 95th percentile, five out of the
23 points of composite wedges correspond to markups across all ages. This is especially the
case for older plants: while for startups of up to five years only two points of the composite
wedge correspond to markups, for plants aged 20 and older markups explain over five points
of the composite wedge. This is despite composite wedges being much larger for younger
plants: 42% for startups of at most two years vs. 20% for those aged 20 and above in the
95th percentile of TFPQ HKft.

The residual wedge (dashed line in Figure 2), χft = (1− τft)
γκ1 ∗

(
rftχ

K
ft

)−ακ1 , is large
and positive for low productivity plants and large but negative for high productivity plants,
especially the youngest. That is, these residual wedges also contribute to making low (high)
TFPQ HK plants larger (smaller) than efficient. Though we cannot directly measure the
user cost of capital and thus decompose χft into its revenue and factor-biased components,
Appendix I implements an indirect approach to this additional decomposition. Figure I1,
which replicates Figure 2 dissecting the role of the (distortions adjusted) user cost of capital,
shows that most of the residual wedge in Figure 2 in fact corresponds to a revenue (or
factor-unbiased) component.

We quantify the overall roles of these factors in explaining size variability through a vari-
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ance decomposition of Rft. We follow a two-stage procedure, similar to that in Hottman,
Redding and Weinstein (2016), the details of which are provided in Appendix G. The con-
tribution of each (log) plant attribute to the variance of (log) sales is given by the product
between its coefficient in equation 28, its correlation coefficient with sales, and the ratio of its
standard deviation to that of sales. For instance, the contribution of TFPQ to the variance
of sales is given by the product: κ2 ∗ corr (ait, Rit)∗ std(ait)

std(Rit)
. The contributions of the different

components add up to 1. We implement the variance decomposition by age (see Appendix
G for details).

Table 3: Variance Decomposition of Sales

Panel A: Unweighted
Levels decomposition Growth decomposition

Weighted
avg. ages

Age 3 Age 10 Age 20 Weighted
avg. ages

Age 3 Age 10 Age 20

TFPQ-HK 1.139 1.184 1.148 1.129 1.216 1.317 1.247 1.194
TFPQ 0.081 0.131 0.087 0.074 0.142 0.252 0.152 0.112
Demand 1.058 1.053 1.061 1.055 1.074 1.065 1.095 1.082
Composite (HK) wedge -0.139 -0.184 -0.148 -0.129 -0.216 -0.317 -0.247 -0.194
Material prices 0.003 0.009 0.001 0.005 -0.005 -0.011 -0.009 -0.005
Wages -0.073 -0.072 -0.069 -0.078 -0.046 -0.053 -0.056 -0.047
Markup -0.019 -0.011 -0.014 -0.018 -0.009 -0.006 -0.006 -0.008
Residual wedge -0.049 -0.110 -0.066 -0.038 -0.156 -0.248 -0.175 -0.134
Marginal cost HRW -0.039 -0.042 -0.047 -0.037 -0.065 -0.059 -0.088 -0.074

Panel B: Revenue weighted
Levels decomposition Growth decomposition

Weighted
avg. ages

Age 3 Age 10 Age 20 Weighted
avg. ages

Age 3 Age 10 Age 20

TFPQ-HK 1.141 1.183 1.167 1.140 1.286 1.384 1.349 1.207
TFPQ 0.085 0.116 0.120 0.109 0.206 0.325 0.209 0.167
Demand 1.056 1.067 1.047 1.031 1.080 1.059 1.140 1.040
Composite (HK) wedge -0.141 -0.184 -0.167 -0.141 -0.287 -0.385 -0.350 -0.208
Material prices -0.003 -0.002 -0.007 0.003 -0.003 0.025 -0.030 0.019
Wages -0.073 -0.067 -0.075 -0.078 -0.043 -0.087 -0.039 -0.036
Markup -0.077 -0.023 -0.062 -0.085 -0.031 -0.021 -0.022 -0.025
Residual wedge 0.012 -0.092 -0.024 0.020 -0.210 -0.302 -0.258 -0.166
Marginal cost HRW 0.021 -0.044 0.014 0.053 -0.050 -0.039 -0.118 -0.015

Note: Weighted average across ages corresponds to the weighted average up to and including age 50. We estimate
a decomposition for each sector and then estimate weighted averages by sector revenue. TFPQ HK values
correspond to the sum of the contributions of D and TFPQ; Composite (HK) wedge is the sum of the contributions
of input prices, markups, and residual wedges; Marginal cost HRW is the sum of the contributions of TFPQ, input
prices, and residual wedges.

Results are presented in the upper left panel of Table 3. Variation in TFPQ HKft

accounts for more than 100% of the variance of sales and sales growth across plants within
a sector. In the levels decomposition, this contribution is 114% averaged across ages. That
is, composite wedges dampen the variability of sales by 14% (corresponding rows in bold in
Table 3).

Focusing first on what contributes most to the TFPQ HK-based sales variability, we
find that quality/appeal contributes the most–by far– to it, but TFPQ is not negligible.
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Averaging over ages, the contributions to the variance of sales are 1.058 for the demand
shifter and 0.081 for TFPQ. For the macro misallocation literature, which has placed such
strong emphasis on isolating quantity productivity, this implies that quality is crucial in a
proper conceptualization of productivity, so that quantity productivity measures should be
quality-adjusted. Compared to the literature on demand vs. cost factors as determinants of
business size, in turn, these results are in consonance with findings pointing at the dominant
role of demand (quality/appeal), but they also show that the role of technical efficiency
(TFPQ) is far from negligible, explaining 7% of the variability of sales. This highlights
the limitations of estimating the role of cost factors from a residual, as in HRW . Such
an approach has led to the interpretation that cost dimensions play a negligible role, since
TFPQ, input prices, and residual wedges are aggregated into this residual marginal cost
component. As is also the case in HRW’s application for the US, we find that the marginal
cost composite makes a negligible contribution to sales variability, of just -3.9% in the levels
decomposition (bottom row in Table 3). But, Table 3 also shows that this small contribution
obscures the 8.1% contribution of technical efficiency by lumping it together with those of
input prices (-7%) and residual wedges (-5%), where the latter is not necessarily attributable
to cost side considerations.

Moving to the question of what explains the 14% contribution of composite wedges in the
levels decomposition, we find that input prices account for 7 of those 14 points, fully explained
by wages. Meanwhile, markups explain 1.9 points, and the residual wedges the remaining 5
points (to which the factor-biased component deducts 2.9 so that the τft component actually
represents 7.9 points, see Appendix I). Results also indicate that markups play minor roles
for most plants, but play an important role at the very top end of the sales distribution,
where the top performers also display high markups that dampen their size. Interestingly,
the contribution of markups to sales scales up by a factor of four when the decomposition
weighs plants based on their revenue to -7.7% (lower left panel). The high weight of markups
in the weighted decomposition (by contrast to the unweighted one) reflects the fact that a
few large plants have very large market shares which significantly influence their size.

The variation in wages that plays such an important role to explain size differentials
across plants might reflect many factors, including the geographic segmentation of labor
markets as well as institutional barriers or other frictions in the labor market, from search
costs to regulatory distortions to bargaining/monopsony power and labor allocation. For
example, canonical search and matching models of the labor market (see, e.g., Mortensen and
Pissarides (1994) yield dispersion in wages positively correlated with productivity induced
by the bilateral bargaining in the face of frictions. Relatedly, on-the-job search models (e.g.,
Burdett and Mortensen (1998) and the many subsequent papers) imply a form of dynamic
monopsony in the labor market so that workers of similar skills may be paid very different
wages across firms. Wage dispersion might also rather reflect unmeasured quality differences
since, by contrast to material inputs prices we are unable to quality adjust wages for our entire
sample period since the data does not break labor into skill categories for the full extent of our
estimation period. To address the relative importance of quality heterogeneity for labor, we
now take advantage of data on broad skill categories available for 2000-2012. The available
skill categories are production workers without tertiary education, production workers with
tertiary education and administrative workers. We construct, for that subperiod, quality-
adjusted wages using an approach analogous to the one we use to build quality-adjusted
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materials and output prices.39 Table 4 presents the results of this adjusted exercise (third
column, to be compared to the second column, which presents the unadjusted decomposition
for the period for which quality adjusting wages is possible).

Adjusting wages for labor quality reduces the contribution of wage dispersion in ac-
counting for sales heterogeneity, and also that of composite wedges, while it decreases the
contribution of TFPQ. This is not surprising as adjusting for labor quality impacts the mea-
surement of technical efficiency. The effect of quality adjusting wages, however, is not large
even for TFPQ and wages, and importantly does not affect other components. In particular,
the contribution of wages falls from 6.1% to 4.8%. The main message that wage dispersion
plays a crucial role in explaining the magnitude of the contribution of (composite) wedges to
the distribution of plant sizes remains after quality adjusting wages, and other components
are not impacted. Thus, even if further labor quality adjustment is warranted, the lack of
sensitivity of the contribution of other components suggests the inferences we draw for other
components are robust. We, thus, proceed with our main full sample results as a baseline
that provides robust inferences.

Table 4: Variance Decomposition of Sales With Quality Adjusted Wages

Levels Life cycle growth
Unadjusted wage Q-adj. Wage Unadjusted wage Q-adj. Wage

1982-2012 2000-2012 2000-2012 1982-2012 2000-2012 2000-2012

TFPQ-HK 1.139 1.146 1.133 1.216 1.235 1.219
TFPQ 0.081 0.095 0.083 0.142 0.175 0.158
Demand 1.058 1.051 1.051 1.074 1.060 1.060
Composite (HK) wedge -0.139 -0.146 -0.133 -0.216 -0.236 -0.219
Material prices 0.003 0.006 0.006 -0.005 -0.008 -0.008
Wages -0.073 -0.061 -0.048 -0.046 -0.034 -0.016
Markup -0.019 -0.012 -0.012 -0.009 -0.006 -0.006
Residual wedge -0.049 -0.079 -0.079 -0.156 -0.188 -0.189
Marginal cost HRW -0.039 -0.038 -0.038 -0.065 -0.054 -0.054

Note: Weighted average across ages corresponds to the weighted average up to and including age 50. We
estimate a decomposition for each sector and then estimate weighted averages by sector revenue. TFPQ HK
values correspond to the sum of the contributions of D and TFPQ; Composite (HK) wedge is the sum of the
contributions of input prices, markups, and residual wedges; Marginal cost HRW is the sum of the contributions
of TFPQ, input prices, and residual wedges.

Back to the top-left panel of table 3, the contributions of the different attributes to sales
vary depending on the plant’s age. Quality/appeal becomes increasingly important compared
to TFPQ for older plants. The ratio of contributions to sales of D relative to TFPQ is close
to 8 at age 3, but by age 20 it is close to 14. This is because the correlation between sales and

39That is, labeling quality-adjusted wages as ŵft and denoting the set of the three skill categories in the

data as Ωw, the wage index is given by ln
ŵft

ŵft−1
=
∑

j∈Ωw

ln
(

wfjt

wfjt−1

) 1
3

+ 1
σw−1 lnλ

w,QRW
ft

where λw,QRW
ft =

∏
j∈Ωw

(
swfjt

swfjt−1

) 1
3

and swfjt is the share of skill class j in f ’s payroll at time t. We then

build a quality-adjusted labor input given by the payroll deflated with our adjusted wages. TFPQ is also
re-calculated using this quality-adjusted input.
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TFPQ decreases for older plants, while that between sales and demand remains fairly stable.
In other words, technical efficiency is particularly important for (composite) productivity for
younger plants. Residual wedges, χft, also play a more important dampening role at the
youngest ages. The top quartile of productivity is crucial in understanding the decreasing
importance of composite wedges for sales variability over the life cycle (2.

We conduct an analogous decomposition for the life cycle growth of sales,
Rft

Rf0
.40 We

emphasize that we can measure life cycle growth directly using longitudinal data for each
plant, rather than relying on cross-cohort comparisons. This approach addresses the usual
selection concern in the literature on business’ life cycle growth (Eslava, Haltiwanger and
Pinzón, 2022). Results, presented in the right panel of Table 3, are broadly consistent with
those in levels. However, the contributions of technical efficiency and residual wedges to the
variability of sales are larger (in absolute value) for life cycle growth than the level of sales.
The decomposition of residual marginal costs, HRW , also has interesting implications over
the life cycle in the growth decomposition. At age 3, the residual marginal cost of 5.9% is
accounted for a 25.2% technical efficiency component, a residual wedge component of -24.8%
and -6.4% from input prices. By age 20, the residual marginal cost of -7.4% is accounted
for by an 11.2% technical efficiency component, a residual wedge component of -13.4%, and
-5.2% from input prices.

We only characterize and decompose life cycle size and growth for survivors up to any
given age. Appendix H contrasts patterns for plants that survive into the future vs. exits-
to-be (those for which year t is their last period in activity), showing that average patterns
are mainly driven by plants that will survive, so that the exit bias is small. Appendix H
also shows that: 1) Exits-to-be are much smaller than the average survivor and display
markedly lower quality, and slightly lower TFPQ, but also pay lower wages; 2) Results for
the sales decomposition are in general robust to selection, in the sense of being similar for
survivors-to-be and exits-to-be. However, TFPQ plays a relatively more important role
vis-a-vis demand for exiters compared to survivors, suggesting that technical efficiency is
important for survival. Wedges are also negative for exits-to-be, and play a more important
role for them than survivors. That is, even though exits-to-be are relatively small, they
remain significantly oversized compared to efficiency up to the time of their exit.

6 Results: aggregate productivity

Our results for the cross section imply that the distribution of quality-adjusted productiv-
ity, TFPQ HK, is dominated by the dispersion of quality/appeal, and that size dispersion
across plants is dampened by the presence of composite wedges that are negatively correlated
with quality-adjusted productivity. This section assesses: 1) the efficiency loss generated by
distortions to the size distribution, and how each of the components of composite wedges
contributes to that loss; and 2) the value that the dispersion in quality-adjusted productiv-

40We build the growth of variable Z over the life cycle of a plant at a given age as
Zf,age

Zf,0
where Zf0 is the

level of Z at f ′s birth, calculated as the average for ages 0 to 2. By averaging over the plant’s first few years
in operation we deal with measurement error coming, for instance, from partial-year reporting (e.g. if the
plant was in operation for only part of its initial year). A plant’s age in year t is the difference between the
current year, t, and the initial year of operation.

31



ity (TFPQ HK), and each of its two components, efficiency and quality/appeal, have for
aggregate productivity.

Aggregate Efficiency, AEt, as characterized by equation 20, expresses the gap between

actual aggregate productivity and productivity in a world with no tfprft =
Cftµft

γ(1−τft)
disper-

sion (where underlines were previously introduced to denote the idiosyncratic components
of TFPR). That is, the benchmark is a world without idiosyncratic composite wedges. We
calculate AEt for each sector in an average year and then aggregate across sectors using
sector revenue weights. Results are displayed in Table 5.

The top row of Column (1) shows the value that this aggregate object takes in our data.
There is an aggregate productivity loss of 37.4% with respect to the efficient benchmark.
Equation 21 shows that this loss depends on the covariance between (functions of) the com-
posite wedge and TFPQ HK, as well as the expected value and dispersion of composite
wedges. As shown in Appendix L, the estimated loss in our application in fact stems from a
strong negative correlation between the composite wedge and productivity, in an environment
with high dispersion of these wedges.

This estimated 37.4% efficiency loss corresponds to the combined effect of input price
dispersion, idiosyncratic markups, and residual wedges. To assess the impact of these different
distortions on aggregate efficiency, we progressively shut down the dispersion coming from
each of them and their combinations. This is shown in the remaining rows of Column (1).
Eliminating sources of tfpr dispersion brings aggregate productivity closer to its efficient
level. All three dimensions that we measure separately play non-negligible roles in explaining
efficiency losses, with input price dispersion having the most bite, but markups and residual
wedges also being important. If input prices were the only source of dispersion the efficiency
loss would be 31.9% (AE=0.679). The corresponding efficiency loss from markup dispersion
alone would be close to 10.5% and the one from residual wedges alone 16% (AE = 0.895
and AE = 0.84, respectively). The fact that input prices, markups, and residual wedges are
closely interconnected implies that the efficiency losses from the three individual components
do not add up to the total loss from shutting down the composite wedge.

There is negligible change in these results when we quality-adjust wages (see Table 6)
suggesting that the efficiency losses from input price dispersion reflect features of the labor
market other than differentials in the quality of labor that systematically lead high pro-
ductivity plants to face higher wages. While establishing what those features of the labor
market are is beyond the scope of our paper, the fact that high-productivity plants are at
the same time the largest and the ones that pay high wages is not consistent with a simple
story of monopsony power by large producers in the labor market. Importantly, the impact
of the sales components other than wages (i.e., markups and residual wedges) is robust to
quality-adjusting wages.

The important contribution of idiosyncratic markups for aggregate inefficiencies is distinct
from their relatively minor role in accounting for the unweighted size distribution. The fact
that a few plants do exhibit significant markups, and that these tend to be high-productivity
and large size plants and thus carry a large weight in aggregate productivity (both efficient
and actual), explains the important role played by markups in aggregate productivity and
efficiency losses. It also resonates with the finding that markups do carry important weight
to explain plant size differentials on an activity-weighted basis (Table 3).
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Table 5: Allocative Efficiency: The Role of Distortions

Sector type

AEt =

 1
Nt

∑
It


∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprt


−1

σ−1


1
σ−1

All Low
γ
(
1− 1

σ

) Intermediate
γ
(
1− 1

σ

) High
γ
(
1− 1

σ

) Low
sd(µft)

High
sd(µft)

(1) (2) (3) (4) (5) (6)

AE 0.624 0.727 0.651 0.401 0.671 0.405
Shutting down markups and wedges (only input price disp. remain) 0.679 0.807 0.715 0.392 0.732 0.430
Shutting down input prices and wedges (only markup disp. remain) 0.895 0.968 0.898 0.807 0.941 0.679
Shutting down input prices and markups (only wedges remain) 0.840 0.854 0.861 0.733 0.795 1.054
Shutting down wedges (only input price and markup disp. remain) 0.619 0.776 0.650 0.321 0.688 0.292
Shutting down markups (only input price disp. and wedges remain) 0.704 0.737 0.752 0.464 0.685 0.797
Shutting down input prices (only markup disp. and wedges remain) 0.762 0.855 0.761 0.667 0.787 0.640
Shutting down all (no TFPR dispersion) 1.000 1.000 1.000 1.000 1.000 1.000

Number of sectors 23 4 16 3 19 4
Range of parameter [0.18, 0.31] [0.37− 0.6] [0.65, 0.69] < 0.1 > 0.1

Note: In this table we consider input prices combined, which include material prices and wages.

Table 6: Allocative Efficiency With Quality Adjusted Wages

Unadjusted wage Q-adj. Wage
1982-2012 2000-2012 2000-2012

AE 0.624 0.579 0.586
Shutting down markups and wedges (only input price disp. remain) 0.679 0.658 0.687
Shutting down input prices and wedges (only markup disp. remain) 0.895 0.887 0.890
Shutting down input prices and markups (only wedges remain) 0.840 0.833 0.815
Shutting down wedges (only input price and markup disp. remain) 0.619 0.598 0.622
Shutting down markups (only input price disp. and wedges remain) 0.704 0.680 0.681
Shutting down input prices (only markup disp. and wedges remain) 0.762 0.730 0.722

Note: In this table we consider input prices combined, which include material prices and wages.

There is significant heterogeneity across sectors in terms of both the size of efficiency
losses from distortions and the role that each type of distortion plays. Efficiency losses are in
general larger in sectors where the revenue function displays little curvature (high returns to
scale in production, γ, or high elasticity of substitution σ), so that efficiency would require
much larger concentration of activity than seen in the data. This is seen in Figure 3 and in
Columns (2) to (6) of Table 5. The top left panel of Figure 3 displays allocative efficiency
by sector, as a function of the sector’s γ(1− 1

σ
), showing the generally negative relationship

between this parameter and allocative efficiency. Not only allocative efficiency tends to be
lower in sectors with high γ(1− 1

σ
), but the relationship is nonlinear, with large drops in AE

as one moves towards the highest values of γ(1− 1
σ
). The other panels of Figure 3 show that

this is because the dispersion of both TFPR and TFPQ is higher at the right end of the
γ(1− 1

σ
) spectrum and despite a less negative correlation between the composite wedges and

the TFPQ terms of AE. The relationship between revenue curvature and AE, however, is
not strictly monotonic, since the relationship between TFPR and TFPQ also depends on
the relative weights of different factors of production, and of σ (more on this in section 7).
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Figure 3: Allocative Efficiency vs. γ(1− 1
σ
)
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Note: Lines correspond to a degree 3 polynomial fit. In panel 4 we omit outliers for the following three sectors: sector 355 with
γ(1− 1/σ) = 0.60 and values of 34.0 for “All” and 37.3 for “only residual wedge”; sector 382 with γ(1− 1/σ) = 0.45 and values
of 45.9 for “All” and 41.4 for “only residual wedge”; and sector 384 with γ(1− 1/σ) = 0.65 and values of 55.3 for “All” and 16.3
for “only residual wedge”.

The three sectors for which γ(1 − 1
σ
) > 0.64, reported in Column 3 of Table 5, present

aggregate efficiency losses of 60% (AE=0.4). This is by contrast to a 37.6% overall aggregate
loss (column 1) and a 27.3% loss in sectors where γ(1− 1

σ
) < 0.3141. It is both the case that, in

41On average γ(1− 1
σ ) = 0.47, see Table 1. The γ(1− 1

σ ) thresholds that separate groups in Table 5 reflect
the fact that our estimate naturally cluster sectors in these three groups, with a large concentration of sectors
between σ = 0.37 and 0.6.
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sectors with less curvature in the revenue function (i.e. to the right of the figure), composite
wedges are more negatively correlated with TFPQ HK, and there is more dispersion in
the terms of allocative efficiency involving TFPR and TFPQ HK (see the other panels of
Figure 3).

Columns (5) and (6), in turn, show that idiosyncratic markups imply much larger ef-
ficiency losses in sectors with high markup variability. The overall efficiency loss is 26.6
percentage points larger in the four sectors with highest markup dispersion compared to the
rest (AE = 0.405 in column (6) compared to AE = 0.671 in Column (5)). The efficiency loss
from markup dispersion alone is close to 32% in those sectors (AE = 0.679 in column (6)),
compared to less than 6% in the rest (AE = 0.941, column (5)).

Finally, we examine the value that heterogeneity in quality-adjusted productivity
(TFPQ HK) has for aggregate productivity. We start from efficient productivity, TFPt

eff

(given by equation 19 in the absence of tfpr dispersion) and evaluate its value against a
counterfactual level that would arise if dispersion in TFPQ HK were shut down. TFP eff is
a large 152% higher than what it would be in the absence of TFPQ HK dispersion, most of
this gain driven by dispersion in demand/quality/appeal, with a negligible impact of -7.7%
from the dispersion of TFPQ. Quality/appeal/demand affects aggregate (quality-adjusted)
productivity directly because consumers value it and indirectly because higher quality plants
produce more to satisfy that demand. Meanwhile, higher technical efficiency at the plant-level
has offsetting effects on plant revenue by increasing output directly, subsequently reducing
prices. As a result, aggregate productivity is, in general, convex in dispersion in D but has
a more ambiguous relationship with dispersion in technical efficiency (TFPQ).

7 Robustness to alternative estimates of production

and demand function elasticities

One of our contributions is the design and implementation of a joint estimation method
for the production function and the demand function, taking advantage of the availability
of quantity and price data for both outputs and inputs. This use of the richness of the
data makes the estimation consistent with the model, in that it takes fully into account the
different dimensions of heterogeneity incorporated into the model and delivers estimates of
both γ and σ. But, how important is this approach to identify the patterns that we find?
Does it solve quantitatively significant biases that alternative estimation methods may be
subject to? To answer the above question we implement usual alternative methods based on
more limited sets of information to determine values for the parameter vector {α, β, ϕ, γ, σ}.
The methods we implement are frequently used in the literature. Once we have estimated
parameters under one of the alternative methods, we obtain estimates of TFPQ HK and
implement the decomposition of sales variability into the contributions of TFPQ HK and
TFPR, and our aggregate efficiency analysis, using the new estimates of parameters and plant
attributes. Notice that, in absence of plant-level price information one would be unable to
further decompose TFPQ HK into its demand and technology components, and TFPR into
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input prices, markups, and residual wedges.42 The comparison of results across alternative
estimation methods sheds light on the value added of our joint estimation.

7.1 Alternative estimation methods

Databases used in the analysis of the role of distortions on the size distribution of businesses
typically have information on a plant’s revenue and input expenditures, but not on plants’
output and input prices. Using this type of information, researchers estimate production
elasticities from cost shares (e.g. HK), or through proxy methods using revenue deflated
with an aggregate deflator as an –admittedly imperfect–measure of production. We attempt
both approaches. As for the σ parameter, HK impose a value of 3, based on previous
estimates, while others use alternative methods that we also try. We now briefly summarize
the different alternatives we implement. Details are provided in Appendix M.

Cost Shares, CS: As in HK, we take factor elasticities equal to their respective cost
shares, and impose σ = 3.

Proxy methods, ACF and DEU: We estimate the production function specified in
equation (20) in the appendix, but using revenue as the dependent variable and materials
costs rather than our internally-deflated materials. We implement a version that follows
(Ackerberg, Caves and Frazer, 2015) and another following (De Loecker, Eeckhout and Unger,
2020), which we label, respectively, as ACF and DEU . The latter differs from the former
because DEU explicitly recognize the potential price bias emerging from the use of revenue
as dependent variable, which leads to a control function that includes market shares (see
Appendix M). In both cases, we impose σ = 3.

Alternative joint estimation, KG: Blackwood et al. (2021) propose a way to use
insights from Klette and Griliches (1996) to jointly estimate the production function param-

eters and σ. Using Pft = DtdftQ
− 1

σ
ft and its implication that Pt = DtQ

− 1
σ

t we have that
Pft

Pt
= Q

1
σ
t Q

− 1
σ

ft dft. Thus, Rft can be written:

Rft = PftQft = PtQ
1
σ
t Q

1− 1
σ

ft dft = PtQ
1
σ
t

(
AftX

γ
ft

)1− 1
σ dft (29)

Based on this implication, we estimate the following version of the revenue function:

lnRft = α lnKft+β lnLft+ϕ ln(Pmft∗Mft)+
1

σ
lnEt+

((
1− 1

σ

)
(lnAft + lnPt) + ln dft

)
(30)

where α = α
(
1− 1

σ

)
, β = β

(
1− 1

σ

)
, ϕ = ϕ

(
1− 1

σ

)
, and Et = QtPt. The parameter that

accompanies Et allows us to estimate
(
1− 1

σ

)
so that we can obtain the production elasticities

by adjusting the estimated revenue elasticities correspondingly. Following Blackwood et al.
(2021) we estimate 30 through proxy methods, using Et or Et−1 to instrument ξAft.

Uniproduct: De Loecker et al. (2016) suggest the use of the sample of uniproduct
plants as an alternative for the need to aggregate across products in multi-product units.

42By contrast, our framework inherits the characteristic of HK ′s model that TFPQ HK and TFPR can
be estimated using information on revenue and parameter estimates (equation 16).

36



We also estimate a version of our baseline estimation restricting the sample to uniproduct
establishments.

OLS demand estimation: To assess the importance of having access to production data
to form our instrument for demand, we also carry an OLS estimation of demand function (26)
to estimate σ. Such estimation takes advantage of the information on Pft and Qft but ignores
the information on input use that is taken advantage of in our baseline joint estimation to
identify σ.

7.2 Parameter estimates

Figure 4 and the bottom panel of Table 7 describe the estimated parameters for our different
alternative methods. Compared with our baseline estimation, cost share and proxy methods
miss much of the variability in production technologies across sectors. In particular, beyond
the fact that these methods do not estimate σ, and rather impose σ = 3 for all sectors, there
is less dispersion in estimates of α, β and ϕ under these alternative methods vs. our baseline.
Treating our baseline as truth for the purposes of this discussion, they also tend to overesti-
mate (on average) the elasticity of production with respect to materials and underestimate
that of labor. And, the practice of imputing σ = 3, used frequently in conjunction with
these alternative production estimates, overestimates σ for all sectors in our sample (see also
Table 1). As a result, alternative methods CS, ACF, and DEU significantly underestimate
the concavity of the revenue function and its dispersion (last panel of Figure 4 and columns
2, 3 and 4 of Table 7, bottom panel, where γ(1 − 1

σ
) is much higher than in the baseline

reported in column 1).
The KG method provides an attempt to estimate both production function and demand

parameters using only information on revenue and input use, together with the structure of
the model. Results display high dispersion, implausibly high in some cases. In fact, these
estimations required externally imposing the restriction γ(1− 1

σ
) < 1 to ensure a non-explosive

solution to the plant’s problem. Even with that restriction, the mean estimated σ exceeds
3 in both versions of this approach, reaching numbers above σ = 4 for several sectors, with
one sector even going above σ = 8. Production function parameters are overestimated, with
returns to scale in production averaging well over 1, and in fact, exceeding 1 for most sectors.
The degree of concavity of the revenue function is hugely underestimated in these approaches.
γ(1− 1

σ
) exceeds 0.75 in KG, on average and for most sectors, compared with a value of 0.47

in the baseline (Figure 4 and columns 5 and 6 vs. 1 of Table 7).
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Figure 4: Parameter Densities Under Alternative Estimation Methods
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Note: Histogram weighted by the number of plants in each sector. Solid and dashed lines represent, respectively, the average
and median of the distribution.
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The estimation for uniproduct plants yields average parameter estimates not far from the
average baseline results. But parameter estimates also exhibit more dispersion across sectors
in the uniproduct estimation than the baseline scenario, likely a reflection of less precision
derived from the loss of a large fraction of the sample.

Finally, the OLS estimation of the demand function yields biased estimates of the elasticity
of substitution. By taking advantage of information on the use of inputs by suppliers, our
baseline estimation method addresses the bias arising from supply-demand simultaneity in
the price vs. quantity relationship.

7.3 Sales decomposition and aggregate productivity under alter-
native parameters

The curvature parameter of the revenue function γ(1 − 1
σ
) is uniformly closer to one us-

ing alternative (traditional) estimation methods relative to our baseline. We know from
our analysis above curvature is crucial in the measurement and quantification of the role of
quality-adjusted productivity and wedges. Consistent with that perspective, the top panel of
Table 7 shows that alternative methods tend to yield a higher (absolute value) contribution to
sales variance of both quality-adjusted productivity and wedges. With curvature parameter
closer to one, reconciling the observed dispersion in size in the data requires greater partic-
ipation of both dimensions.43 A related but distinct contributing factor is that alternative
methods yield, as discussed above, less dispersion in factor elasticities.

From the analysis above, we know that greater dispersion in wedges holding other things
equal dampens allocative efficiency. However, across columns of Table 7, other things are
not held equal. For the alternative methods (excluding column 2), both the contribution
of quality-adjusted productivity and wedges increase relative to the baseline as well as the
loading parameters for these components into allocative efficiency (see equation (21)). Recall
also that we find above that aggregate efficient productivity tends to be increasing in disper-
sion in quality-adjusted productivity. Given these offsetting forces, it is not surprising that
the middle panel of Table 7 finds that some methods yield higher and some lower allocative
efficiency relative to the baseline. More systematically, alternative methods yield a greater
range of allocative efficiency across sectors (based on the gap between the max and min).

Our analysis has highlighted the tight connection between the determinants of the size dis-
tribution and the factors influencing allocative efficiency. Alternative estimation (traditional)
methods yield greater dispersion in parameters across sectors, higher average curvature, a
tendency for greater contribution to sales dispersion of both quality-adjusted productivity
and wedges, and more dispersion in allocative efficiency across sectors. In addition, alter-
native methods based on revenue data by construction don’t permit the decomposition of
quality-adjusted productivity into its technical efficiency and quality/appeal components, as
well as the decomposition of composite wedges into their input price, markup, and residual
wedge components. Thus, the value-added of the price and quantity data for both outputs

43An exception is the second column that uses cost shares and σ = 3. This case stands out as having no
dispersion in curvature across sectors as well as having an especially high materials output elasticity. The
latter is important in this context since materials have volatility similar to sales dampening the dispersion of
TFPQ and thus the contribution of quality-adjusted productivity.
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and inputs enables both internally consistent estimation and also a much richer decomposi-
tion of components driving the size distribution and allocative efficiency.

Table 7: Variance Decomposition of Sales and Allocative Efficiency Under Alter-
native Parameters

Main
Cost shares,

σ = 3
ACF ,
σ = 3

DEU,
σ = 3

Klette-
Griliches
(Contempo-
rary Q)

Klette-
Griliches
(Lagged Q)

Uniproduct
Cost shares,
σ from OLS
demand

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Variance Decomposition of Sales

TFPQ-HK 1.139 1.121 1.242 1.219 1.243 1.241 1.172 1.639
Composite (HK) wedge -0.139 -0.121 -0.242 -0.219 -0.243 -0.241 -0.172 -0.639

Panel B: Aggregate Efficiency

AE (aggregate) 0.624 0.692 0.647 0.648 0.534 0.539 0.612 0.679
AE (min) 0.335 0.312 0.135 0.333 0.015 0.015 0.279 0.256
AE (max) 0.772 0.909 0.900 0.891 0.892 0.945 0.813 1.149
AE (s.d.) 0.142 0.162 0.178 0.156 0.256 0.262 0.157 0.240

Panel C: Parameter average and descriptive statistics (across sectors)

γ(1− 1/σ) (min) 0.179 0.667 0.613 0.605 0.738 0.741 0.227 0.747
γ(1− 1/σ) (mean) 0.475 0.667 0.690 0.673 0.769 0.769 0.484 0.874
γ(1− 1/σ) (max) 0.693 0.667 0.787 0.724 0.813 0.813 0.819 0.959
σ 1.953 3.000 3.000 3.000 3.207 3.213 2.198 10.350
γ 1.028 1.000 1.036 1.010 1.220 1.220 0.960 1.000
ϕ (Materials) 0.520 0.676 0.599 0.612 0.702 0.709 0.512 0.676
β (Labor) 0.365 0.259 0.288 0.261 0.371 0.369 0.295 0.259
α (Capital) 0.143 0.065 0.148 0.137 0.148 0.142 0.154 0.065
sd(TFPQ-HK) 2.365 1.052 0.968 0.984 0.904 0.907 2.064 0.657
sd(TFPR) 0.512 0.407 0.404 0.401 0.419 0.422 0.540 0.407
Materials defator CUPI PPI PPI PPI PPI PPI CUPI PPI
σw Main Main Main Main Main Main Uniproduct Main

Note: Decomposition corresponds to the weighted average across ages up to and including age 50. We estimate a decomposition for
each sector and then estimate weighted averages by sector revenue. TFPQ HK values correspond to the sum of the contributions of D
and TFPQ; Composite (HK) wedge wedge is the sum of the contributions of input prices, markups, and residual wedges. Column 2
estimates factor elasticities from cost shares and uses the often-used σ = 3. Column 3 implements an ACF estimation for the revenue
function. Column 4 implements an estimation as in De Loecker, Eeckhout and Unger (2020) that uses an ACF estimation method for
the revenue function with a control function including market shares. Columns 5 and 6 estimates a revenue function that combines the
ACF and Klette and Griliches (1996) approach to obtain σ. Column 5 uses contemporary sectoral output while column 6 uses lagged
sectoral output to identify the elasticity of substitution. Column 7 implements the baseline joint production and demand estimation
restricting to plants that in all observed years produce the same single product. Column 8 estimates σ from an OLS demand equation.

8 Conclusion

Using a novel framework that integrates previous approaches taking advantage of rich data
on both prices and quantities of outputs and inputs, we find evidence of a tight relationship
between the determinants of the size distribution of activity and the determinants of aggregate
productivity. The size distribution within industries is dominated by heterogeneity in quality-
adjusted productivity with quality/appeal accounting for most of that variation but technical
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efficiency playing an important supporting role. The size distribution of activity is compressed
by wedges relative to that implied from the quality-adjusted productivity given the curvature
of production and demand elasticities. A relatively mild compression of sales dispersion of
14% leads to a large loss in aggregation efficiency of 38%.

Much of the misallocation literature identifies only composite wedges but our framework
and data permit decomposing them into input prices, markups, and residual wedges. Since
the latter only account for about half of the composite wedges in our analysis, we have
whittled down unexplained wedges considerably. Some of the literature has decomposed the
variance of size across firms into demand and supply (marginal cost) components with the
finding that demand accounts for almost of the variance. We have shown that the marginal
cost component is effectively a composite of technical efficiency, input prices, and residual
wedges, with the first working in the opposite direction of the latter two sub-components.
Moreover, it remains unclear whether residual wedges are operating on the cost or demand
side of variation. The implication is that there is more of a role to technical efficiency for
variation in firm size than suggested by such demand vs. supply decompositions.

We show how determinants of the size distribution contribute to aggregate productivity.
Dispersion in quality-adjusted productivity contributes positively mostly through the quali-
ty/appeal component, while the wedges are a drag on aggregate productivity. Idiosyncratic
markups are a negligible factor in accounting for the size distribution but are quantitatively
important as a drag on aggregate productivity. This distinct pattern emerges since markups
are the highest for the most productive (and largest) plants. Our results provide guidance
and perspective on the ongoing debate on the drag on productivity from markups.

Many open questions and areas for future research remain. Our findings on the role of
input price heterogeneity (even adjusting for quality) point to important sources of such
heterogeneity, including frictions in the markets for inputs as well as potentially monopsony
power. Sorting this out should be an important topic for future research.

Our findings contribute to the policy discussion regarding interventions to address the
limitations to business growth. Our results highlight that size-to-productivity wedges are
important and especially prevalent for young businesses but also that dimensions internal
to businesses are even more important than wedges to explain differential firm growth. On
this internal side, the focus has frequently been on efforts conducive to improvements in
technical efficiency. For instance, research on managerial practices that impact productivity
has focused on production processes and employee management (e.g. Bloom and Reenen,
2007; Bloom et al., 2016) . Our approach highlights the multidimensional character of growth
drivers that are internal to the business, including the appeal to customers and input prices
potentially affected by its decisions. Our results align with those in Atkin, Khandelwal and
Osman (2017, 2019) in pointing at quality as a crucial driver of business growth and at the
fact that quality improvements may impose costs in terms of technical efficiency. Moreover,
the results suggest that growth based on reducing barriers to quality differentiation is more
conducive to welfare gains than that based on reducing dispersion in technical efficiency
across businesses.

While we are able to attribute a large part of the role of HK composite wedges to input
price and markup dispersion, our residual wedges are still a black box. Identifying the
specific sources of wedges that dampen output and sales growth, especially for young plants,
beyond input prices and markups that we analyze, is one area of research. One natural

41



candidate is adjustment costs that especially impact young businesses. These may include
the costs of developing and accumulating organizational capital (such as the customer base).
Our finding that between-plant differences in demand become more important in accounting
for output growth volatility for more mature plants is consistent with this hypothesis. Also,
the fact that we decompose quality-adjusted productivity into its technical efficiency and
demand components yields guidance as to the potential source of wedges dampening growth.

Size-dependent policies and other characteristics of the regulatory environment are an-
other set of candidate explanations behind our residual wedges, which we find to be highly
negatively correlated with productivity, both in terms of efficiency and quality. Colombia is
a country that underwent dramatic reforms over our sample period, some of them displaying
cross-sectional variability (such as product-specific reductions to import tariffs in the early
1990s), and thus offers fruitful ground for investigating the impact of the regulatory environ-
ment on life-cycle dynamics. Future work that explored the relationship between regulatory
and tariff reform and the evolution of the attributes and wedges we identify would be of
interest.

Our findings provide insights into the relative importance of the variance in plant at-
tributes valued by consumers (efficiency and quality) in explaining plant size, inviting further
research into the ultimate sources of the variance in these attributes. While our framework al-
lows for wedges that are correlated with current these attributes, and in fact we find that they
are hugely negatively inversely correlated, we do not take explicit account of the endogenous
response, to past performance and past wedges, of quality-adjusted quantity productivity and
its components over the life cycle. Research that sheds light on the endogenous determinants
of the variance in the supply side (TFPQ) and demand side (D) attributes of plants should
have a high priority in future research. In an exploratory analysis shown in Appendix E we
find evidence that TFPQ and demand shocks are highly persistent and reflect indicators of
endogenous innovation.

Another interesting area for future research is to link our findings regarding markups with
other approaches where markups are estimated without resorting to assumptions regarding
preferences. Recent analyses by De Loecker, Eeckhout and Unger (2020) present evidence
of substantial dispersion in such markups across producers using an approach that is flexible
on the structure of demand but that has the potential limitation of attributing to markups
variation that may come from residual wedges or the structure of technology across producers.
Our analysis using plant-level quality adjusted prices, while more restrictive in the sense of
imposing a given demand structure, highlights challenges for pursuing this agenda. As we
emphasize, even measuring plant-level output and inputs for multi-product plants that use a
variety of inputs requires taking a stand on the demand structure. Tackling technology and
markup heterogeneity in this multi-product, multi-input environment with ongoing quality
change will be a challenge.

Data Availability Statement

The data used in this paper cannot be shared publicly, as the Colombian Annual Manufac-
turing Survey and the Technological Development and Innovation Survey are housed at the
Colombian Departamento Administrativo Nacional de Estad́ıstica. Instructions on how to
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request access, along with all replication programs and detailed explanations of data construc-
tion, are available at the following DOI: https://dx.doi.org/10.5281/zenodo.7604117.
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“Unraveling firms: Demand, productivity and markups heterogeneity.” Unpublished
manuscript.

Foster, Lucia, John Haltiwanger, and Chad Syverson. 2008. “Reallocation, Firm
Turnover, and Efficiency: Selection on Productivity or Profitability?” American Economic
Review, 98(1): 394–425.

Foster, Lucia, John Haltiwanger, and Chad Syverson. 2016. “The Slow Growth of
New Plants: Learning about Demand?” Economica, 83(329): 91–129.

Garćıa-Santana, Manuel, and Josep Pijoan-Mas. 2014. “The reservation laws in India
and the misallocation of production factors.” Journal of Monetary Economics, 66: 193–209.

Garicano, Luis, Claire Lelarge, and John Van Reenen. 2016. “Firm Size Distortions
and the Productivity Distribution: Evidence from France.” American Economic Review,
106(11): 3439–79.

45
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